草业学报 ›› 2021, Vol. 30 ›› Issue (3): 100-109.DOI: 10.11686/cyxb2020385
李蒋伟(), 王志有, 侯生珍, 雷云, 贾建磊, 周力, 桂林生()
收稿日期:
2020-08-10
修回日期:
2020-10-26
出版日期:
2021-03-20
发布日期:
2021-03-09
通讯作者:
桂林生
作者简介:
Corresponding author. E-mail: 26660162@qq.com基金资助:
Jiang-wei LI(), Zhi-you WANG, Sheng-zhen HOU, Yun LEI, Jian-lei JIA, Li ZHOU, Lin-sheng GUI()
Received:
2020-08-10
Revised:
2020-10-26
Online:
2021-03-20
Published:
2021-03-09
Contact:
Lin-sheng GUI
摘要:
本试验旨在研究日粮精粗比对育肥藏羊瘤胃组织形态及微生物菌群的影响。选择210只早期断奶藏羔羊,随机分成7组,每组30只,分别对其饲喂精粗比为20∶80 (A)、30∶70 (B)、40∶60 (C)、50∶50 (D)、60∶40 (E)、70∶30 (F)和80∶20 (G)的基础日粮,预饲期10 d,试验期90 d。试验结束后,每组随机选择3只试验羊屠宰,采集瘤胃组织及瘤胃液样品。试验采用冷冻切片观察瘤胃组织发育情况,测定瘤胃肌肉层、角化层厚度,乳头长度、宽度和密度;采用16S rDNA基因测序测定瘤胃微生物,分析瘤胃细菌丰度和多样性指数。结果表明:1)日粮精粗比可对瘤胃组织形态造成显著影响(P<0.05)。当精粗比例为50∶50时,藏羊瘤胃角化层厚度、瘤胃乳头密度和高度显著高于其余各组(P<0.05);精粗比例为30∶70时,瘤胃肌层厚度显著高于其余各组(P<0.05)。2)本试验7组共产生299个OTUs(operational taxonomic units),其中共有OTUs 259个,占比86.7%,独有OTUs 40个,其中F和G组分别含独有OTUs 14和8个;试验F组香浓指数、Ace指数和Chao1指数均显著高于其余各组,而辛普森指数显著低于其余各组(P<0.05);各组间细菌多样性差异显著(P<0.05)。3)门水平下,随着精粗比例上升厚壁菌门相对丰度有降低趋势,且A组显著高于其余各组(P<0.05);科水平下,毛螺菌科相对丰度与精粗比例呈负相关,E组普雷沃氏菌科相对丰度较高(P<0.05)。综合瘤胃组织表型和细菌菌群多样性可知:随着日粮中精料水平的提高,瘤胃组织形态发生改变,且在一定程度上抑制瘤胃乳头及角化层的发育;但日粮中精料比例的增加(70∶30)可丰富瘤胃中细菌多样性。
李蒋伟, 王志有, 侯生珍, 雷云, 贾建磊, 周力, 桂林生. 日粮精粗比对育肥藏羊瘤胃组织形态及微生物菌群的影响[J]. 草业学报, 2021, 30(3): 100-109.
Jiang-wei LI, Zhi-you WANG, Sheng-zhen HOU, Yun LEI, Jian-lei JIA, Li ZHOU, Lin-sheng GUI. Effects of dietary concentrate∶roughage ratio on rumen morphology and microbial flora in fattening Tibetan sheep[J]. Acta Prataculturae Sinica, 2021, 30(3): 100-109.
项目Project | 组成Composition | 营养Nutrient content | 含量Content |
---|---|---|---|
玉米Corn | 65.5 | 粗蛋白Crude protein | 15.15 |
豆粕Soybean meal | 8.0 | 粗脂肪Crude fat | 2.70 |
菜籽粕Rapeseed meal | 16.0 | 粗纤维Crude fiber | 3.83 |
棉粕Cotton meal | 4.0 | 钙Calcium | 0.55 |
食盐Salt | 0.5 | 有效磷Available phosphorus | 0.45 |
石粉Stone powder | 1.0 | 蛋氨酸Methionine | 0.37 |
预混料Premix1) | 5.0 | 赖氨酸Lysine | 0.95 |
合计Total | 100.0 |
表1 精饲料组成及营养水平
Table 1 Composition and nutrition level of refined feed (%)
项目Project | 组成Composition | 营养Nutrient content | 含量Content |
---|---|---|---|
玉米Corn | 65.5 | 粗蛋白Crude protein | 15.15 |
豆粕Soybean meal | 8.0 | 粗脂肪Crude fat | 2.70 |
菜籽粕Rapeseed meal | 16.0 | 粗纤维Crude fiber | 3.83 |
棉粕Cotton meal | 4.0 | 钙Calcium | 0.55 |
食盐Salt | 0.5 | 有效磷Available phosphorus | 0.45 |
石粉Stone powder | 1.0 | 蛋氨酸Methionine | 0.37 |
预混料Premix1) | 5.0 | 赖氨酸Lysine | 0.95 |
合计Total | 100.0 |
组别 Group | 角化层 Keratinized layer (μm) | 肌肉层 Muscular layer (μm) | 乳头密度 Nipple density (piece·cm-2) | 乳头高度 Nipple height (μm) | 乳头宽度 Nipple width (μm) |
---|---|---|---|---|---|
A | 24.64±6.34cd | 928.38±107.79bc | 62.50±11.50b | 2217.77±736.03ab | 1620.00±413.88c |
B | 31.07±4.75ab | 1764.06±240.83a | 70.80±15.71b | 1691.11±456.95b | 1666.66±403.60bc |
C | 29.22±6.24b | 1553.56±486.86ab | 68.40±8.50b | 2095.55±395.95ab | 1540.00±254.75c |
D | 33.08±8.53a | 1078.97±224.99bc | 87.80±21.72a | 2240.00±592.79ab | 1446.66±218.17c |
E | 26.62±4.84c | 1127.97±320.84abc | 55.50±6.92bc | 2597.77±506.27a | 1646.66±301.82bc |
F | 27.70±6.11bc | 932.42±329.59bc | 40.00±5.79c | 2424.44±575.30ab | 2302.22±437.20a |
G | 22.81±6.10d | 776.11±209.99c | 59.20±6.87b | 2742.22±592.99a | 1988.88±395.10ab |
表2 日粮精粗比对藏羊瘤胃组织形态的影响
Table 2 Effect of dietary concentrate to forage ratio on rumen morphology of Tibetan sheep
组别 Group | 角化层 Keratinized layer (μm) | 肌肉层 Muscular layer (μm) | 乳头密度 Nipple density (piece·cm-2) | 乳头高度 Nipple height (μm) | 乳头宽度 Nipple width (μm) |
---|---|---|---|---|---|
A | 24.64±6.34cd | 928.38±107.79bc | 62.50±11.50b | 2217.77±736.03ab | 1620.00±413.88c |
B | 31.07±4.75ab | 1764.06±240.83a | 70.80±15.71b | 1691.11±456.95b | 1666.66±403.60bc |
C | 29.22±6.24b | 1553.56±486.86ab | 68.40±8.50b | 2095.55±395.95ab | 1540.00±254.75c |
D | 33.08±8.53a | 1078.97±224.99bc | 87.80±21.72a | 2240.00±592.79ab | 1446.66±218.17c |
E | 26.62±4.84c | 1127.97±320.84abc | 55.50±6.92bc | 2597.77±506.27a | 1646.66±301.82bc |
F | 27.70±6.11bc | 932.42±329.59bc | 40.00±5.79c | 2424.44±575.30ab | 2302.22±437.20a |
G | 22.81±6.10d | 776.11±209.99c | 59.20±6.87b | 2742.22±592.99a | 1988.88±395.10ab |
样本Sample | 样本标签Sample ID | 原始序列Raw tags | 除冗序列Clean tags | 覆盖率Coverage |
---|---|---|---|---|
A | A1 | 47409 | 42630 | 0.9976 |
A2 | 48409 | 43441 | 0.9964 | |
A3 | 49072 | 44882 | 0.9829 | |
B | B1 | 48760 | 44689 | 0.9965 |
B2 | 47926 | 43621 | 0.9980 | |
B3 | 49688 | 45363 | 0.9960 | |
C | C1 | 46850 | 41406 | 0.9961 |
C2 | 49319 | 45017 | 0.9971 | |
C3 | 49568 | 45481 | 0.9942 | |
D | D1 | 45952 | 40859 | 0.9970 |
D2 | 44801 | 40189 | 0.9972 | |
D3 | 44756 | 40678 | 0.9965 | |
E | E1 | 70611 | 66751 | 0.9954 |
E2 | 46891 | 42217 | 0.9960 | |
E3 | 67635 | 63718 | 0.9963 | |
F | F1 | 68837 | 65067 | 0.9970 |
F2 | 67831 | 64266 | 0.9966 | |
F3 | 68860 | 64864 | 0.9937 | |
G | G1 | 71046 | 67960 | 0.9974 |
G2 | 67437 | 63525 | 0.9971 | |
G3 | 45513 | 40926 | 0.9950 |
表3 测序质量
Table 3 Sequencing quality
样本Sample | 样本标签Sample ID | 原始序列Raw tags | 除冗序列Clean tags | 覆盖率Coverage |
---|---|---|---|---|
A | A1 | 47409 | 42630 | 0.9976 |
A2 | 48409 | 43441 | 0.9964 | |
A3 | 49072 | 44882 | 0.9829 | |
B | B1 | 48760 | 44689 | 0.9965 |
B2 | 47926 | 43621 | 0.9980 | |
B3 | 49688 | 45363 | 0.9960 | |
C | C1 | 46850 | 41406 | 0.9961 |
C2 | 49319 | 45017 | 0.9971 | |
C3 | 49568 | 45481 | 0.9942 | |
D | D1 | 45952 | 40859 | 0.9970 |
D2 | 44801 | 40189 | 0.9972 | |
D3 | 44756 | 40678 | 0.9965 | |
E | E1 | 70611 | 66751 | 0.9954 |
E2 | 46891 | 42217 | 0.9960 | |
E3 | 67635 | 63718 | 0.9963 | |
F | F1 | 68837 | 65067 | 0.9970 |
F2 | 67831 | 64266 | 0.9966 | |
F3 | 68860 | 64864 | 0.9937 | |
G | G1 | 71046 | 67960 | 0.9974 |
G2 | 67437 | 63525 | 0.9971 | |
G3 | 45513 | 40926 | 0.9950 |
组别 Group | 香农指数 Shannon index | 辛普森指数 Simpson index | Ace 指数 Ace index | Chaol 指数 Chaol index |
---|---|---|---|---|
A | 3.37±0.49c | 0.1061±0.0612a | 361.98±42.85c | 347.33±18.58c |
B | 3.97±0.14c | 0.0500±0.0072bc | 374.90±36.15c | 398.83±45.21bc |
C | 3.98±0.35c | 0.0662±0.0325ab | 372.86±40.92c | 385.95±57.62bc |
D | 4.94±0.65b | 0.0188±0.0106bc | 581.28±63.42bc | 595.64±43.95bc |
E | 5.30±0.67ab | 0.0116±0.0052c | 739.51±68.24bc | 765.13±87.05abc |
F | 5.98±0.11a | 0.0065±0.0003c | 1265.71±73.17a | 1295.09±75.07a |
G | 5.40±0.70ab | 0.0161±0.0115bc | 925.83±76.09ab | 945.64±64.36ab |
表4 阿尔法多样性指数
Table 4 Alpha diversity index
组别 Group | 香农指数 Shannon index | 辛普森指数 Simpson index | Ace 指数 Ace index | Chaol 指数 Chaol index |
---|---|---|---|---|
A | 3.37±0.49c | 0.1061±0.0612a | 361.98±42.85c | 347.33±18.58c |
B | 3.97±0.14c | 0.0500±0.0072bc | 374.90±36.15c | 398.83±45.21bc |
C | 3.98±0.35c | 0.0662±0.0325ab | 372.86±40.92c | 385.95±57.62bc |
D | 4.94±0.65b | 0.0188±0.0106bc | 581.28±63.42bc | 595.64±43.95bc |
E | 5.30±0.67ab | 0.0116±0.0052c | 739.51±68.24bc | 765.13±87.05abc |
F | 5.98±0.11a | 0.0065±0.0003c | 1265.71±73.17a | 1295.09±75.07a |
G | 5.40±0.70ab | 0.0161±0.0115bc | 925.83±76.09ab | 945.64±64.36ab |
项目 Project | 组别Group | ||||||
---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | |
厚壁菌门 Firmicutes | 0.8459±0.0411a | 0.7900±0.1073ab | 0.7532±0.2004ab | 0.3878±0.0932bc | 0.3111±0.2331c | 0.0368±0.0269c | 0.2511±0.1104c |
变形菌门 Proteobacteria | 0.0018±0.0005c | 0.0046±0.0032c | 0.0039±0.0021c | 0.1420±0.0725bc | 0.1692±0.0542bc | 0.5097±0.0199a | 0.3415±0.0905ab |
拟杆菌门 Bacteroidetes | 0.0752±0.0271ab | 0.0184±0.0066b | 0.1385±0.0352ab | 0.2347±0.0653ab | 0.3579±0.2276a | 0.0820±0.0115ab | 0.1062±0.0356ab |
酸杆菌门 Acidobacteria | 0.0006±0.0002b | 0.0003±0.0001b | 0.0003±0.0001b | 0.0823±0.0311ab | 0.0728±0.0402ab | 0.2342±0.0163a | 0.1621±0.0614ab |
放线菌门 Actinobacteria | 0.0540±0.0398 | 0.0071±0.0022 | 0.0228±0.0066 | 0.0533±0.0239 | 0.0211±0.0045 | 0.0501±0.0062 | 0.0552±0.0157 |
表5 门水平下细菌相对含量
Table 5 Relative content of bacterial at phylum level
项目 Project | 组别Group | ||||||
---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | |
厚壁菌门 Firmicutes | 0.8459±0.0411a | 0.7900±0.1073ab | 0.7532±0.2004ab | 0.3878±0.0932bc | 0.3111±0.2331c | 0.0368±0.0269c | 0.2511±0.1104c |
变形菌门 Proteobacteria | 0.0018±0.0005c | 0.0046±0.0032c | 0.0039±0.0021c | 0.1420±0.0725bc | 0.1692±0.0542bc | 0.5097±0.0199a | 0.3415±0.0905ab |
拟杆菌门 Bacteroidetes | 0.0752±0.0271ab | 0.0184±0.0066b | 0.1385±0.0352ab | 0.2347±0.0653ab | 0.3579±0.2276a | 0.0820±0.0115ab | 0.1062±0.0356ab |
酸杆菌门 Acidobacteria | 0.0006±0.0002b | 0.0003±0.0001b | 0.0003±0.0001b | 0.0823±0.0311ab | 0.0728±0.0402ab | 0.2342±0.0163a | 0.1621±0.0614ab |
放线菌门 Actinobacteria | 0.0540±0.0398 | 0.0071±0.0022 | 0.0228±0.0066 | 0.0533±0.0239 | 0.0211±0.0045 | 0.0501±0.0062 | 0.0552±0.0157 |
细菌种类 Bacteria | 组别Group | ||||||
---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | |
毛螺菌科 Lachnospiraceae | 0.3019± 0.0881a | 0.2776± 0.0664a | 0.1820± 0.0811ab | 0.0929± 0.0231bc | 0.0487± 0.0366bc | 0.0073± 0.0059c | 0.0610± 0.0251bc |
瘤胃球菌科 Ruminococcaceae | 0.1820± 0.0871 | 0.1759± 0.0517 | 0.2219± 0.1627 | 0.0624± 0.0165 | 0.0683± 0.0103 | 0.0072± 0.0046 | 0.0410± 0.0231 |
韦荣氏球菌科 Veillonellaceae | 0.1443± 0.0412 | 0.1135± 0.0386 | 0.1720± 0.0466 | 0.1586± 0.0256 | 0.0947± 0.0310 | 0.0099± 0.0021 | 0.0540± 0.0112 |
克里斯滕森菌科 Christensenellaceae | 0.0644± 0.0432b | 0.2138± 0.0106a | 0.1063± 0.0514ab | 0.0549± 0.0124b | 0.0698± 0.0552b | 0.0083± 0.0023b | 0.0857± 0.0102b |
普雷沃氏菌科 Prevotellaceae | 0.0164± 0.0101b | 0.0020± 0.0014b | 0.0706± 0.0507ab | 0.0335± 0.0026ab | 0.1564± 0.0412a | 0.0132± 0.0072ab | 0.0275± 0.0036ab |
表6 科水平下细菌相对含量
Table 6 Relative content of bacterial at family level
细菌种类 Bacteria | 组别Group | ||||||
---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | |
毛螺菌科 Lachnospiraceae | 0.3019± 0.0881a | 0.2776± 0.0664a | 0.1820± 0.0811ab | 0.0929± 0.0231bc | 0.0487± 0.0366bc | 0.0073± 0.0059c | 0.0610± 0.0251bc |
瘤胃球菌科 Ruminococcaceae | 0.1820± 0.0871 | 0.1759± 0.0517 | 0.2219± 0.1627 | 0.0624± 0.0165 | 0.0683± 0.0103 | 0.0072± 0.0046 | 0.0410± 0.0231 |
韦荣氏球菌科 Veillonellaceae | 0.1443± 0.0412 | 0.1135± 0.0386 | 0.1720± 0.0466 | 0.1586± 0.0256 | 0.0947± 0.0310 | 0.0099± 0.0021 | 0.0540± 0.0112 |
克里斯滕森菌科 Christensenellaceae | 0.0644± 0.0432b | 0.2138± 0.0106a | 0.1063± 0.0514ab | 0.0549± 0.0124b | 0.0698± 0.0552b | 0.0083± 0.0023b | 0.0857± 0.0102b |
普雷沃氏菌科 Prevotellaceae | 0.0164± 0.0101b | 0.0020± 0.0014b | 0.0706± 0.0507ab | 0.0335± 0.0026ab | 0.1564± 0.0412a | 0.0132± 0.0072ab | 0.0275± 0.0036ab |
1 | Akin D E, Borneman W S, Lyon C E. Degradation of leaf blades and stems by monocentric and polycentric isolates of ruminal fungi. Animal Feed Science Technology, 1990, 31: 205. |
2 | Zhang H T. Effects of different corn silage levels on rumen microflora and metabonomics of Holstein reserve cattle. Beijing: China Agricultural University, 2017. |
张红涛. 不同玉米青贮水平对荷斯坦后备牛瘤胃液微生物组及其代谢组的影响. 北京: 中国农业大学, 2017. | |
3 | Hu H L. Study on nutritional physiological mechanism of subacute rumen acidosis in dairy goats. Hohhot: Inner Mongolia Agricultural University, 2008. |
胡红莲. 奶山羊亚急性瘤胃酸中毒营养生理机制的研究. 呼和浩特: 内蒙古农业大学, 2008. | |
4 | Liu D C. Effects of different quality roughage diets and yeast culture on rumen fermentation and cellulolytic bacteria in sheep. Hohhot: Inner Mongolia Agricultural University, 2007. |
刘大程. 不同品质粗饲料日粮及添加酵母培养物对绵羊瘤胃发酵及纤维分解菌的影响. 呼和浩特: 内蒙古农业大学, 2007. | |
5 | Mackie R I, White B A, Isaacson R E. Gastrointesrinal microbiology. New York: Chapman & Hall, 1997: 658-680. |
6 | Wang H R. Effects of dietary concentrate to roughage ratio and nitrogen sources on rumen fiber degrading bacteria and fiber degradation in sheep. Hohhot: Inner Mongolia Agricultural University, 2006. |
王海荣. 不同日粮精粗比及氮源对绵羊瘤胃纤维降解菌群和纤维物质降解的影响. 呼和浩特: 内蒙古农业大学, 2006. | |
7 | Xu X F, Hu D D, Guo T T, et al. Structure changes of rumen bacterial flora of dairy cows under different concentrate to roughage ratio diets. Chinese Journal of Animal Nutrition, 2019, 31(12): 5541-5550. |
徐晓锋, 胡丹丹, 郭婷婷, 等. 不同精粗比饲粮条件下奶牛瘤胃细菌菌群结构变化的研究. 动物营养学报, 2019, 31(12): 5541-5550. | |
8 | Wang J Q, Lu D X, Yang H J, et al. Feeding standard of meat-producing sheep and goats, NY-T 816-2004. Beijing: Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2004. |
王加启, 卢德勋, 杨红建, 等. 肉羊饲养标准, NY-T 816-2004. 北京: 中华人民共和国农业部, 2004. | |
9 | Suárez B J, Van Reenen C G, Gerrits W J, et al. Effects of supplementing concentrates differing in carbohydrate composition in veal calf diets: Animal performance and rumen fermentation characteristics. Journal of Dairy Science, 2006, 89(11): 4365-4375. |
10 | Feng Y L. Ruminant nutrition. Beijing: Science Press, 2004. |
冯仰廉. 反刍动物营养学. 北京: 科学出版社, 2004. | |
11 | Zeng Y, Gao Y H, Peng Z L, et al. Effects of yeast culture supplementation in diets on rumen fermentation parameters and microflora of house-feeding yak. Chinese Journal of Animal Nutrition, 2020, 32(4): 1721-1733. |
曾钰, 高彦华, 彭忠利, 等. 饲粮中添加酵母培养物对舍饲牦牛瘤胃发酵参数及微生物区系的影响. 动物营养学报, 2020, 32(4): 1721-1733. | |
12 | Zhan J S, Yang Q, Hu Y, et al. Effects of dietary concentration∶roughage ratio on rumen fermentation and flora population structure in Hu sheep. Acta Prataculturae Sinica, 2020, 29(7): 122-130. |
占今舜, 杨群, 胡耀, 等. 日粮精粗比对湖羊瘤胃发酵和菌群结构的影响. 草业学报, 2020, 29(7): 122-130. | |
13 | Bai J, Cong Y Y. Effect of dietary forage-to-concentrate ratios on rumen internal environment and rumen microbial flora. Modern Journal of Animal Husbandry and Veterinary Medicine, 2014(12): 26-28, 33. |
白健, 丛玉艳. 日粮精粗比对瘤胃内环境及微生物区系影响的研究. 现代畜牧兽医, 2014(12): 26-28, 33. | |
14 | Paengkoum P, Chen S, Paengkoum S. Effects of crude protein and undegradable intake protein on growth performance, nutrient utilization, and rumen fermentation in growing Thai-indigenous beef cattle. Tropical Animal Health and Production, 2019, 51(5): 1151-1159. |
15 | Liu G X, Zhang H, Cong L X. Rumen microflora and research technology progress of deer and other ruminants. Feed Industry, 2015, 36(5): 47-50. |
刘国兴, 张辉, 丛立新. 鹿等反刍动物瘤胃微生物区系及研究技术进展. 饲料工业, 2015, 36(5): 47-50. | |
16 | Hua J L, Shi Q C, Yu F Y, et al. Construction and analysis of fosmid library of rumen microbiota of Huanghuai white goat. Journal of Northeast Agricultural University, 2019. |
17 | Li Y S, Han Z Q, Jin T H, et al. Effects of milk replacer on growth performance and rumen microflora in early weaning yimeng black lambs. Chinese Journal of Animal Nutrition, 2019, 31(8): 3600-3611. |
李永洙, 韩照清, 金太花, 等. 代乳粉对沂蒙黑山羊羔羊早期生长性能及其瘤胃微生物区系的影响. 动物营养学报, 2019, 31(8): 3600-3611. | |
18 | Han X F. Study on the influence of day age and dietary concentrate to forage ratio on the rumen microflora of Shaanbei white cashmere goats. Yangling: Northwest Agriculture and Forestry University, 2015. |
韩旭峰. 日龄、日粮精粗比对陕北白绒山羊瘤胃微生物区系影响的研究. 杨凌: 西北农林科技大学, 2015. | |
19 | Wang L J, Li Y G, Zhang Y G, et al. The effects of different concentrate-to-forage ratio diets on rumen bacterial microbiota and the structures of holstein cows during the feeding cycle. Animals: An Open Access Journal from MDPI, 2020, 10(6): 957. |
20 | Heinritz S N, Mosenthin R, Weiss E. Use of pigs as a potential model for research into dietary modulation of the human gut microbiota. Nutrition Research Reviews, 2013, 26(2): 191-209. |
21 | Kim M, Kim J, Kuehn L A, et al. Investigation of bacterial diversity in the feces of cattle fed different diets1. Journal of Animal Science, 2014, 92(2): 683-694. |
22 | Zhang J, Zhang L L, Xu X F. Research progress of Prevotella in the rumen of ruminants. China Feed, 2020(7): 17-21. |
张洁, 张力莉, 徐晓锋. 反刍动物瘤胃内普雷沃氏菌的研究进展. 中国饲料, 2020(7): 17-21. | |
23 | Rosenberg E. The family prevotellaceae. Springer Berlin Heidelberg, 2014: 825-827. |
24 | Wu S, Wang G, Angert E R, et al. Composition, diversity, and origin of the bacterial community in grass carp intestine. PLoS One, 2012, 7(2): e30440. |
[1] | 李宏, 宋淑珍, 高良霜, 郎侠, 刘立山, 宫旭胤, 魏玉兵, 吴建平. 饲养水平对阿勒泰羊胃肠道发育、瘤胃发酵参数及瘤胃微生物区系的影响[J]. 草业学报, 2021, 30(4): 180-190. |
[2] | 张剑搏, 丁考仁青, 梁泽毅, Anum-aliAhmad, 杜梅, 郑娟善, 丁学智. 早期营养干预对幼龄反刍动物瘤胃微生物区系发育的影响[J]. 草业学报, 2021, 30(2): 199-211. |
[3] | 董春晓, 吕佳颖, 张智安, 李飞, 李发弟. 饲料来源对育肥湖羊生产性能、养分消化及瘤胃微生物组成的影响[J]. 草业学报, 2019, 28(4): 106-115. |
[4] | 康婧鹏, 王文基, 郭亚敏, 景小平, 仲崇亮, 郭伟, 龙瑞军, 周建伟. 不同能量水平低氮饲粮对藏羊表观消化率、氮代谢和生长性能的影响[J]. 草业学报, 2018, 27(9): 166-174. |
[5] | 靳继鹏, 郭武君, 张筱艳, 张昌吉, 张勇, 王春辉, 张利平. 冷季放牧补饲对甘肃高山细毛后备母羊瘤胃代谢参数及瘤胃微生物数量的影响[J]. 草业学报, 2018, 27(7): 93-103. |
[6] | 肖红, 徐长林, 张德罡, 张建文, 杨海磊, 柴锦隆, 潘涛涛, 王艳, 鱼小军. 阴山扁蓿豆光合特性对模拟牦牛、藏羊践踏和降水的短期响应[J]. 草业学报, 2017, 26(2): 43-52. |
[7] | 何玮, 郭琳微, 樊鹏辉, 郭斌, 傅艳萍, 尉亚辉. 黄花棘豆在腐解过程中的化感作用及其土壤细菌群落结构分析[J]. 草业学报, 2015, 24(7): 21-29. |
[8] | 杨宏波,刘红,占今舜,林淼,赵国琦. 不同精粗比颗粒饲料对断奶公犊牛瘤胃发酵参数和微生物的影响[J]. 草业学报, 2015, 24(12): 131-138. |
[9] | 潘明洪,凌瑶,景文,马洪平,彭燕. 四川白三叶根瘤菌遗传多样性及系统发育研究[J]. 草业学报, 2014, 23(5): 143-152. |
[10] | 王颖,王玉琴,杨成德,姚玉玲,陈秀蓉,薛莉. 马铃薯贮藏期主要病害拮抗内生细菌的筛选、鉴定及功能评价[J]. 草业学报, 2014, 23(3): 269-275. |
[11] | 高晓星,满百膺,陈秀蓉,杨成德. 东祁连山线叶嵩草内生细菌X4的产吲哚乙酸、解磷、抗菌和耐盐特性研究及分子鉴定[J]. 草业学报, 2013, 22(4): 137-146. |
[12] | 吕和平,魏晖,漆永红,张彦梅,曹素芳,杨发荣,李敏权,沈慧敏. 甘肃省嘉峪关市洋葱鳞茎软腐病病原鉴定[J]. 草业学报, 2013, 22(4): 153-159. |
[13] | 赵玲,柴兆祥,李金花,王蒂. 四株胡萝卜软腐欧文氏杆菌胡萝卜亚种新菌株的分离鉴定[J]. 草业学报, 2011, 20(4): 244-251. |
[14] | 王新峰,毛胜勇,朱伟云. 绞股蓝皂甙对体外瘤胃微生物甲烷产量及发酵特性的影响[J]. 草业学报, 2011, 20(2): 52-59. |
[15] | 毛胜勇,王新峰,朱伟云. 体外法研究延胡索酸二钠对瘤胃微生物发酵活力及甲烷产量的影响[J]. 草业学报, 2010, 19(2): 69-75. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||