草业学报 ›› 2021, Vol. 30 ›› Issue (4): 121-129.DOI: 10.11686/cyxb2020182
骆望龙(), 夏建强, 李佳欣, 孙淑范, 汪睿, 张勃()
收稿日期:
2020-04-21
修回日期:
2020-06-04
出版日期:
2021-04-20
发布日期:
2021-03-16
通讯作者:
张勃
作者简介:
Corresponding author. E-mail: zbsonny@163.com基金资助:
Wang-long LUO(), Jian-qiang XIA, Jia-xin LI, Shu-fan SUN, Rui WANG, Bo ZHANG()
Received:
2020-04-21
Revised:
2020-06-04
Online:
2021-04-20
Published:
2021-03-16
Contact:
Bo ZHANG
摘要:
被子植物的繁殖性状在很大程度上被认为是通过传粉者介导的自然选择而进化。为了探究狼毒花性状的适应性,以天祝高寒退化草地狼毒为研究材料,通过检测其繁殖相关性状的选择差和选择梯度,探讨了该物种花表型的适应性及可能的选择机制。结果表明:单花序小花数和冠筒长具有显著的选择差和选择梯度(P<0.05),即受到正的定向选择作用;同时,两性状也检测到显著的非线性选择梯度(P<0.05),表现出稳定选择趋向。株高(即花序高度)受到负定向选择作用,其选择梯度为-0.102±0.039(P=0.008);其他性状,如花冠口大小和单株丛花序数均未检测到显著的选择作用。总体表明,在该研究种群,狼毒的部分繁殖性状表现出适应性进化趋势,株高相对较矮、花筒较长和花序小花数较多的个体越有利于其适合度实现而受到选择。
骆望龙, 夏建强, 李佳欣, 孙淑范, 汪睿, 张勃. 高寒退化草地狼毒繁殖性状的选择及其适应性[J]. 草业学报, 2021, 30(4): 121-129.
Wang-long LUO, Jian-qiang XIA, Jia-xin LI, Shu-fan SUN, Rui WANG, Bo ZHANG. Selection for reproductive traits and their adaptation in Stellera chamaejasme in degraded alpine grassland[J]. Acta Prataculturae Sinica, 2021, 30(4): 121-129.
项目 Item | 冠筒长 Corolla tube length | 冠口 Corolla entrance | 小花数 Flowers number | 花序头直径 Inflorescence head diameter | 单株丛花序数 Inflorescence number per plant |
---|---|---|---|---|---|
冠口 Corolla entrance | 0.481** | ||||
小花数 Flowers number | 0.274** | 0.021 | |||
花序头直径Inflorescence head diameter | 0.808** | 0.511** | 0.362** | ||
单株丛花序数Inflorescence number per plant | -0.216* | -0.218* | -0.049 | -0.255** | |
株高 Plant height | 0.065 | -0.050 | 0.234** | 0.132 | 0.273** |
表1 狼毒不同花性状间的相关性
Table 1 Correlation coefficients between floral traits of S. chamaejasme (n=120)
项目 Item | 冠筒长 Corolla tube length | 冠口 Corolla entrance | 小花数 Flowers number | 花序头直径 Inflorescence head diameter | 单株丛花序数 Inflorescence number per plant |
---|---|---|---|---|---|
冠口 Corolla entrance | 0.481** | ||||
小花数 Flowers number | 0.274** | 0.021 | |||
花序头直径Inflorescence head diameter | 0.808** | 0.511** | 0.362** | ||
单株丛花序数Inflorescence number per plant | -0.216* | -0.218* | -0.049 | -0.255** | |
株高 Plant height | 0.065 | -0.050 | 0.234** | 0.132 | 0.273** |
项目 Item | 性状 Traits | 选择梯度 Selection gradients | T值 (P值) T value (P value) |
---|---|---|---|
定向选择Directional selection (β±SE) | 冠筒长 Corolla tube length | 0.067±0.040 | 1.669 (0.095) |
冠口 Corolla entrance | 0.053±0.041 | 1.300 (0.194) | |
单花序小花数Flowers number of per inflorescence | 0.303±0.041 | 7.391 (0.000) | |
单株丛花序数Inflorescence number of per plant | -0.007±0.048 | -0.142 (0.887) | |
株高 Plant height | -0.102±0.039 | -2.634 (0.008) | |
非线性选择Nonlinear selection (2γ±SE) | 冠筒长 Corolla tube length | -0.164±0.076 | -2.152 (0.031) |
冠口Corolla entrance | -0.010±0.052 | -0.181 (0.856) | |
单花序小花数 Flowers number of per inflorescence | -0.138±0.060 | -2.281 (0.023) | |
单株丛花序数Inflorescence number of per plant | -0.008±0.066 | -0.119 (0.905) | |
株高 Plant height | 0.012±0.060 | 0.206 (0.837) |
表2 狼毒繁殖相关性状通过完全回归模型分析的选择梯度
Table 2 Selection gradients of reproductive traits in S. chamaejasme analyzed by complete regression model (n=120)
项目 Item | 性状 Traits | 选择梯度 Selection gradients | T值 (P值) T value (P value) |
---|---|---|---|
定向选择Directional selection (β±SE) | 冠筒长 Corolla tube length | 0.067±0.040 | 1.669 (0.095) |
冠口 Corolla entrance | 0.053±0.041 | 1.300 (0.194) | |
单花序小花数Flowers number of per inflorescence | 0.303±0.041 | 7.391 (0.000) | |
单株丛花序数Inflorescence number of per plant | -0.007±0.048 | -0.142 (0.887) | |
株高 Plant height | -0.102±0.039 | -2.634 (0.008) | |
非线性选择Nonlinear selection (2γ±SE) | 冠筒长 Corolla tube length | -0.164±0.076 | -2.152 (0.031) |
冠口Corolla entrance | -0.010±0.052 | -0.181 (0.856) | |
单花序小花数 Flowers number of per inflorescence | -0.138±0.060 | -2.281 (0.023) | |
单株丛花序数Inflorescence number of per plant | -0.008±0.066 | -0.119 (0.905) | |
株高 Plant height | 0.012±0.060 | 0.206 (0.837) |
项目 Item | 性状 Traits | 选择梯度 Selection gradients | T值 (P值) T value (P value) |
---|---|---|---|
定向选择Directional selection (β±SE) | 冠筒长 Corolla tube length | 0.094±0.035 | 2.715 (0.006) |
单花序小花数 Flowers number of per inflorescence | 0.291±0.038 | 7.689 (0.000) | |
株高 Plant height | -0.108±0.034 | -3.210 (0.001) | |
非线性选择Nonlinear selection (2γ±SE) | 冠筒长Corolla tube length | -0.124±0.056 | -2.247 (0.024) |
单花序小花数Flowers number of per inflorescence | -0.152±0.048 | -3.168 (0.001) | |
相关选择Correlational selection | 株高×冠筒长Plant height×corolla tube length | 0.059±0.037 | 1.618 (0.106) |
表3 狼毒繁殖相关性状最小充足模型分析的选择梯度
Table 3 Selection gradients of reproductive traits in S. chamaejasme analyzed by minimum adequate model (n=120)
项目 Item | 性状 Traits | 选择梯度 Selection gradients | T值 (P值) T value (P value) |
---|---|---|---|
定向选择Directional selection (β±SE) | 冠筒长 Corolla tube length | 0.094±0.035 | 2.715 (0.006) |
单花序小花数 Flowers number of per inflorescence | 0.291±0.038 | 7.689 (0.000) | |
株高 Plant height | -0.108±0.034 | -3.210 (0.001) | |
非线性选择Nonlinear selection (2γ±SE) | 冠筒长Corolla tube length | -0.124±0.056 | -2.247 (0.024) |
单花序小花数Flowers number of per inflorescence | -0.152±0.048 | -3.168 (0.001) | |
相关选择Correlational selection | 株高×冠筒长Plant height×corolla tube length | 0.059±0.037 | 1.618 (0.106) |
1 | Harder L D, Johnson S D. Darwin’s beautiful contrivances: Evolutionary and functional evidence for floral adaptation. New Phytologist, 2009, 183(3): 530-545. |
2 | Campbell D R, Waser N M, Price M V. Mechanisms of hummingbird-mediated selection for flower width in Ipomopsis aggregata. Ecology, 1996, 77(5): 1463-1472. |
3 | Stebbins G L. Adaptive Radiation of reproductive characteristics in angiosperms, I: Pollination mechanisms. Annual Review of Ecology and Systematics, 1970, 1(1): 307-326. |
4 | Sletvold N, Grindeland J M, Gren J. Pollinator-mediated selection on floral display, spur length and flowering phenology in the deceptive orchid Dactylorhiza lapponica. New Phytologist, 2010, 188(2): 385-392. |
5 | Benitez-Vieyra S, Glinos E, Medina A M N, et al. Temporal variation in the selection on floral traits in Cyclopogon elatus (Orchidaceae). Evolutionary Ecology, 2012, 26(6): 1451-1468. |
6 | Zhao Z G, Huang S Q. Differentiation of floral traits associated with pollinator preference in a generalist-pollinated Herb, Trollius ranunculoides (Ranunculaceae). International Journal of Plant Sciences, 2013, 174(4): 637-646. |
7 | Totland O. Environment-dependent pollen limitation and selection on floral traits in an alpine species. Ecology, 2001, 82(8): 2233-2244. |
8 | Conner J K, Hartl D L. A primer of ecological genetics. Sinauer Associates Incorporated, 2004: 199-208. |
9 | Zhang B, Li Q J. Phenotypic selection on the staminal lever mechanism in Salvia digitaloides (Labiaceae). Evolutionary Ecology, 2013, 28(2): 373-386. |
10 | Gomez J M, Bosch J, Perfectti F, et al. Spatial variation in selection on corolla shape in a generalist plant is promoted by the preference patterns of its local pollinators. Proceedings of the Royal Society B: Biological Sciences, 2008, 275(1648): 2241-2249. |
11 | Maad J, Alexandersson R. Variable selection in Platanthera bifolia (Orchidaceae): Phenotypic selection differed between sex functions in a drought year. Journal of Evolutionary Biology, 2004, 17(3): 642-650. |
12 | Sandring S, Rllhmaki M A, Savolainen O. Selection on flowering time and floral display in an alpine and a lowland population of Arabidopsis lyrata. Journal of Evolutionary Biology, 2007, 20(2): 558-567. |
13 | Obeso J R. The costs of reproduction in plants. New Phytologist, 2002, 155(3): 321-348. |
14 | Lu N N, Liu Z H, Ma Y, et al. Phenotypic selection analysis of flower traits in Delphinium kamaonense var. glabrescens (Ranunculaceae). Biodiversity Science, 2019, 27(7): 772-777. |
路宁娜, 刘振恒, 马妍, 等. 展毛翠雀的花性状表型选择. 生物多样性, 2019, 27(7): 772-777. | |
15 | Zhao C Z, Gao F Y, Sheng Y P, et al. Fine-scale spatial distribution and spatial association of Stellera chamaejasme population. Arid Land Geography, 2011, 34(3): 492-498. |
赵成章, 高福元, 盛亚萍, 等. 狼毒种群小尺度空间分布格局及空间关联性研究. 干旱区地理, 2011, 34(3): 492-498. | |
16 | Gao F Y, Zhao C Z, Zhuo M, et al. Spatial distribution and spatial association of Stellera chamaejasme population in the different altitude in in degraded alpine grassland. Acta Ecologica Sinica, 2014, 34(3): 605-612. |
高福元, 赵成章, 卓马, 等. 高寒退化草地不同海拔梯度狼毒种群分布格局及空间关联性. 生态学报, 2014, 34(3): 605-612. | |
17 | Xing F, Wang Y H, Guo J X. Spatial distribution patterns and dispersal mechanisms of the seed population of Stellera chamaejasme on degraded grasslands in Inner Mongolia, China. Acta Ecologica Sinica, 2004, 24(1): 143-148. |
邢福, 王艳红, 郭继勋. 内蒙古退化草原狼毒种子的种群分布格局与散布机制. 生态学报, 2004, 24(1): 143-148. | |
18 | Sun G, Luo P, Wu N, et al. Stellera chamaejasme L. increases soil N availability, turnover rates and microbial biomass in an alpine meadow ecosystem on the eastern Tibetan Plateau of China. Soil Biology and Biochemistry, 2009, 41(1): 86-91. |
19 | Zhao C Z, Zhang Q P. The spatial pattern of soil seed bank of Stellera chamaejasme community in degraded grassland of the Qilian Mountains. Chinese Journal of Grassland, 2010, 32(1): 79-85. |
赵成章, 张起鹏. 祁连山退化草地狼毒群落土壤种子库的空间格局. 中国草地学报, 2010, 32(1): 79-85. | |
20 | Zhang Q, Zhao C Z, Dong X G, et al. Relationships between flower size, flower number, and plant size of Stellera chamaejasme population along an altitude gradient of degraded alpine grassland in Northwest China. Chinese Journal of Ecology, 2013, 32(12): 3160-3166. |
张茜, 赵成章, 董小刚, 等. 高寒退化草地不同海拔狼毒种群花大小, 数量与个体大小的关系. 生态学杂志, 2013, 32(12): 3160-3166. | |
21 | Zhang Q, Zhao C Z, Dong X G, et al. Relationship between flower size and leaf size, number of Stellera chamaejasme population of degraded alpine grassland along an altitude gradient. Chinese Journal of Ecology, 2015, 34(1): 40-46. |
张茜, 赵成章, 董小刚, 等. 高寒退化草地不同海拔狼毒种群花大小与叶大小, 叶数量的关系. 生态学杂志, 2015, 34(1): 40-46. | |
22 | Zhang Z Q, Zhang Y H, Sun H. The reproductive biology of Stellera chamaejasme (Thymelaeaceae): A self-incompatible weed with specialized flowers. Flora-Morphology, Distribution, Functional Ecology of Plants, 2011, 206(6): 567-574. |
23 | Zhang G, Guo Y Z, Zhang S P, et al. Harm status and control strategy of poisonous weeds of natural grasslands in Tianzhu County of Gansu Province. Progress in Veterinary Medicine, 2019, 40(3): 123-128. |
张庚, 郭亚洲, 张水平, 等. 甘肃天祝县天然草地毒草危害状况调查与防控. 动物医学进展, 2019, 40(3): 123-128. | |
24 | Shi Y, Hu T H, Gao H J, et al. The community vegetation composition and stability characteristics of alpine meadow under two grazing modes. Acta Prataculturae Sinica, 2019, 28(9): 1-10. |
施颖, 胡廷花, 高红娟, 等. 两种放牧模式下高寒草甸群落植被构成及稳定性特征. 草业学报, 2019, 28(9): 1-10. | |
25 | Lande R, Arnold S J. The measurement of selection on correlated characters. Evolutionary Ecology, 1983, 37(6): 1210-1226. |
26 | Zhang B, Claßen-Bockhoff R. Sex-differential reproduction success and selection on floral traits in gynodioecious Salvia pratensis. BMC Plant Biology, 2019, 19(1): 1-10. |
27 | Xie L H, Huang Q Y, Cao H J, et al. Leaf functional traits of Acer mono in Wudalianchi Volcano, China. Biodiversity Science, 2019, 27(3): 286-296. |
谢立红, 黄庆阳, 曹宏杰, 等. 五大连池火山色木槭叶功能性状特征. 生物多样性, 2019, 27(3): 286-296. | |
28 | Conner J K. Understanding natural selection: An approach integrating selection gradients, multiplicative fitness components, and path analysis. Ethology Ecology & Evolution, 1996, 8(4): 387-397. |
29 | Hodgins K A, Barrett S C H. Natural selection on floral traits through male and female function in wild populations of the heterostylous daffodil Narcissus triandrus. Evolution, 2008, 62(7): 1751-1763. |
30 | Gomez. Phenotypic selection and response to selection in Lobularia maritima: Importance of direct and correlational components of natural selection. Journal of Evolutionary Biology, 2001, 13(4): 689-699. |
31 | Irwin R E. The consequences of direct versus indirect species interactions to selection on traits: Pollination and nectar robbing in Ipomopsis aggregata. The American Naturalist, 2006, 167(3): 315-328. |
32 | Verma S K, Angadi S G, Patil V S, et al. Growth, yield and quality of chrysanthemum (Chrysanthemum morifolium Ramat.) cv. Raja as influenced by integrated nutrient management. Karnataka Journal of Agricultural Sciences. 2011, 24: 681-683. |
33 | Bloch D, Erhardt A. Selection toward shorter flowers by butterflies whose probosces are shorter than floral tubes. Ecology, 2008, 89(9): 2453-2460. |
34 | Nilsson L A. The evolution of flowers with deep corolla tubes. Nature, 1988, 334: 147-149. |
35 | Johnson S, Steiner K. Long-tongued fly pollination and evolution of floral spur length in the Disa draconis complex (Orchidaceae). Evolution, 1997, 51: 45-53. |
36 | Laverty T M. Bumblebee learning and flower morphology. Animal Behaviour, 1994, 47: 531-545. |
37 | Darwin C. On the various contrivances by which british and foreign orchids are fertilised by insects. London: John Murray, 1862: 202. |
38 | Hedhly A, Hormaza J I, Herrero M. The effect of temperature on pollen germination, pollen tube growth, and stigmatic receptivity in peach. Plant Biology, 2005, 7(5): 476-483. |
39 | Dietrich L, Koerner C. Thermal imaging reveals massive heat accumulation in flowers across a broad spectrum of alpine taxa. Alpine Botany, 2014, 124(1): 27-35. |
40 | Zhang G P, Yang M L, Cheng X X, et al. Effects of floral morphology on flower temperature increment in alpine plants. Guihaia, 2017, 37(7): 822-828. |
张国鹏, 杨明柳, 程贤训, 等. 高山植物花形态特征对花温度积累的影响. 广西植物, 2017, 37(7): 822-828. | |
41 | Yang D M, Zhang J J, Zhou D, et al. Leaf and twig functional traits of woody plants and their relationships with environmental change: A review. Chinese Journal of Ecology, 2012, 31(3): 702-713. |
杨冬梅, 章佳佳, 周丹, 等. 木本植物茎叶功能性状及其关系随环境变化的研究进展. 生态学杂志, 2012, 31(3): 702-713. | |
42 | Irwin R E. Morphological variation and female reproductive success in two sympatric Trillium species: Evidence for phenotypic selection in Trilliumerectum and Trilliumgrandiflorum (Liliaceae). American Journal of Botany, 2000, 87(2): 205-214. |
43 | Wu Y, Liu Y R, Peng H, et al. Pollination ecology of alpine herb Meconopsis integrifolia at different altitudes. Chinese Journal of Plant Ecology, 2015, 39(1): 1-13. |
吴云, 刘玉蓉, 彭瀚, 等. 高山植物全缘叶绿绒蒿在不同海拔地区的传粉生态学研究. 植物生态学报, 2015, 39(1): 1-13. | |
44 | Zhao Z G, Du G Z, Zhou X H, et al. Variations with altitude in reproductive traits and resource allocation of three tibetan species of ranunculaceae. Australian Journal of Botany, 2006, 54(7): 691-700. |
45 | Milla R, Reich P B. Multi-trait interactions, not phylogeny, fine-tune leaf size reduction with increasing altitude. Annals of Botany, 2011, 107(3): 455-465. |
46 | Zhang Q, Zhao C Z, Ma X L, et al. Response of reproductive allocation of Stellera chamaejasme population in alpine grassland to altitude. Chinese Journal of Ecology, 2013, 32(2): 247-252. |
张茜, 赵成章, 马小丽, 等. 高寒草地狼毒种群繁殖分配对海拔的响应. 生态学杂志, 2013, 32(2): 247-252. |
[1] | 鲍根生, 宋梅玲, 王玉琴, 尹亚丽, 王宏生. 围封和防除狼毒对狼毒斑块土壤理化性质和微生物量影响的研究[J]. 草业学报, 2020, 29(9): 63-72. |
[2] | 马妍, 路宁娜, 路广梅, 陈学林. 两种同域分布马先蒿植物花特征的表型选择研究[J]. 草业学报, 2020, 29(2): 186-192. |
[3] | 孙慧芳, 魏岩, 闫紫烟, 严成. 紫花地丁花形态的季节转化对繁育系统及结实的影响[J]. 草业学报, 2020, 29(12): 198-204. |
[4] | 水宏伟, 干珠扎布, 吴红宝, 王子欣, 吕成文, 高清竹, 胡国铮, 严俊, 谢文栋, 王有侠. 禁牧对藏北高原狼毒型退化草地群落特征及生产力的影响[J]. 草业学报, 2020, 29(10): 14-21. |
[5] | 宋梅玲, 王玉琴, 鲍根生, 王宏生. 狼毒防除对高寒草地群落植物养分重吸收的影响[J]. 草业学报, 2020, 29(10): 47-57. |
[6] | 刘雅婧, 蒙仲举, 党晓宏, 宋文娟, 翟波. 狼毒浸提液对3种牧草种子萌发和幼苗生长的影响[J]. 草业学报, 2019, 28(8): 130-138. |
[7] | 张金霞, 陈垣, 郭凤霞, 王引权, 周盛茂, 肖生伟. 二倍体菘蓝开花习性及传粉特性研究[J]. 草业学报, 2019, 28(6): 157-166. |
[8] | 鲍根生, 王玉琴, 宋梅玲, 王宏生, 尹亚丽, 刘生财, 杨有武, 杨铭. 狼毒斑块对狼毒型退化草地植被和土壤理化性质影响的研究[J]. 草业学报, 2019, 28(3): 51-61. |
[9] | 王晓蕾, 王建, 张庆玲, 闫静, 强胜, 宋小玲. 抗草丁膦转基因油菜与野芥菜的抗性回交3代子1代和子2代的适合度[J]. 草业学报, 2017, 26(12): 138-151. |
[10] | 廖敏, 张波, 范中菡, 陈熊春蕊, 张小平. 阿坝地区狼毒内生放线菌多样性及抗菌活性[J]. 草业学报, 2016, 25(3): 43-51. |
[11] | 张永超, 袁晓波, 牛得草, 吴淑娟, 张典业, 宗文杰, 傅华. 玛曲高寒草甸高原鼠兔种群数量对植被调控措施的响应[J]. 草业学报, 2016, 25(2): 87-94. |
[12] | 季丽萍, 郭丽珠, 刘新, 王琳, 张世峰, 郭斌, 傅艳萍, 何玮, 尉亚辉. 瑞香狼毒营养成分分析与评价[J]. 草业学报, 2016, 25(1): 262-267. |
[13] | 张未仲,贺兵,曹广春,张泽华,乌亚汗,刘世超,王海荣. 针茅及羊草对亚洲小车蝗生活力影响的定量分析[J]. 草业学报, 2013, 22(5): 302-309. |
[14] | 张妙青,王彦荣,张吉宇,刘志鹏,张磊,聂斌,周晶. 垂穗披碱草种质资源繁殖相关特性遗传多样性研究[J]. 草业学报, 2011, 20(3): 182-191. |
[15] | 王文星,安琪,汪莹,王猛,曹成有. 瑞香狼毒细胞悬浮培养及黄酮积累的研究[J]. 草业学报, 2010, 19(6): 132-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||