草业学报 ›› 2022, Vol. 31 ›› Issue (1): 69-80.DOI: 10.11686/cyxb2021250
薛晴(), 陈斌, 杨小梅, 杨宇佳, 李子葳, 薄杉, 何淼()
收稿日期:
2021-06-22
修回日期:
2021-09-08
出版日期:
2021-12-01
发布日期:
2021-12-01
通讯作者:
何淼
作者简介:
Corresponding author. E-mail: hemiao_xu@126.com基金资助:
Qing XUE(), Bin CHEN, Xiao-mei YANG, Yu-jia YANG, Zi-wei LI, Shan BO, Miao HE()
Received:
2021-06-22
Revised:
2021-09-08
Online:
2021-12-01
Published:
2021-12-01
Contact:
Miao HE
摘要:
以紫鸭跖草、‘花叶’水竹草、吊竹梅和‘绿叶’水竹草为试验材料,利用遮光网人工模拟5个光强梯度,研究不同光强对4种鸭跖草科植物生物量分配、水分生理以及光响应曲线特征的影响。结果表明:随光强的降低,4种植物的地上生物量均呈先升后降的趋势,并在遮光度25%至75%期间显著升高(P<0.05),除紫鸭跖草的总生物量无显著变化外,其他3种植物的总生物量也呈先升后降趋势;不同光强对4种植物的物质分配规律及冠根比的影响不同,但4种植物的茎贡献率均呈上升趋势;正午水势随光强的降低而增加,且与失水速率的变化趋势具有较高的一致性,其中紫鸭跖草和吊竹梅的失水速率较低;在不同光强处理下,4种植物的光响应曲线均呈现出随着光合有效辐射(PAR)的增加而先增加后趋于平缓的趋势;随着光强的降低,4种植物的最大净光合速率、表观量子效率和光饱和点均呈现出先升后降的趋势;紫鸭跖草和吊竹梅具有较高的最大净光合速率、表观量子效率、光饱和点以及较低的暗呼吸速率,且水分利用效率在不同处理间无显著差异,均表现出较高的水平。综上所述,4种植物在适当的弱光环境中(遮光度25%~75%),可以通过调整形态、物质分配规律及光响应特征的方式去更有效的利用弱光资源,但不同种植物的应对能力呈现出一定的差异性,其中紫鸭跖草和吊竹梅的光适应性较强。
薛晴, 陈斌, 杨小梅, 杨宇佳, 李子葳, 薄杉, 何淼. 不同光强下4种鸭跖草科植物的生物量分配、水分生理及光响应特征[J]. 草业学报, 2022, 31(1): 69-80.
Qing XUE, Bin CHEN, Xiao-mei YANG, Yu-jia YANG, Zi-wei LI, Shan BO, Miao HE. Biomass allocation, water use characteristics, and photosynthetic light response of four Commelinaceae plants under different light intensities[J]. Acta Prataculturae Sinica, 2022, 31(1): 69-80.
图1 不同光强对生物量的影响L0: 100%自然光强100% natural light intensity; L1: 75%自然光强75% natural light intensity; L2: 50%自然光强50% natural light intensity; L3: 25%自然光强25% natural light intensity; L4: 5%自然光强5% natural light intensity. 不同小写字母表示同一物种不同处理间差异显著(P<0.05),下同。The different lowercase letters mean the significant differences among treatments of the same species (P<0.05), the same below.
Fig.1 Effect of different light intensities on biomass
物种Species | 处理 Treatments | 最大净光合速率Pm (μmol·m-2·s-1) | 表观量子效率 AQY (μmol·m-2·s-1) | 光补偿点 LCP (μmol·m-2·s-1) | 光饱和点 LSP (μmol·m-2·s-1) | 暗呼吸速率 Rd (μmol·m-2·s-1) | 水分利用效率WUE (μmol·mmol-1) | 决定 系数 R2 |
---|---|---|---|---|---|---|---|---|
CP | L0 | 5.54±0.17b | 0.023±0.01c | 35.96±7.09a | 123.66±29.91a | 0.77±0.04b | 2.54±0.11a | 0.999 |
L1 | 6.70±0.48ab | 0.042±0.00b | 21.83±1.55b | 195.94±21.78bc | 1.02±0.13b | 2.57±0.08a | 0.999 | |
L2 | 7.07±0.53a | 0.061±0.01a | 27.10±7.49ab | 257.44±28.84c | 1.74±0.21a | 2.02±0.11a | 0.989 | |
L3 | 6.49±1.22ab | 0.043±0.01bc | 28.91±5.99ab | 159.83±10.71ab | 0.89±0.07b | 2.53±0.32a | 0.988 | |
L4 | 3.79±0.27c | 0.039±0.01bc | 10.94±2.29c | 138.68±8.18c | 0.31±0.19c | 2.15±0.04a | 0.998 | |
TF | L0 | 3.25±0.07b | 0.040±0.00a | 22.01±1.68a | 106.40±2.77b | 0.88±0.05ab | 1.12±0.04b | 0.999 |
L1 | 4.93±0.13a | 0.043±0.01ab | 26.76±1.68a | 174.81±8.51a | 0.89±0.02ab | 1.72±0.01a | 0.996 | |
L2 | 4.50±0.76a | 0.032±0.00ab | 25.88±8.16a | 169.21±36.71a | 0.63±0.44b | 2.01±0.20a | 0.988 | |
L3 | 3.06±0.08b | 0.030±0.00ab | 35.51±0.83a | 137.12±5.70ab | 1.05±0.03a | 1.17±0.11b | 0.998 | |
L4 | 1.93±0.06c | 0.023±0.02b | 35.51±1.46a | 98.53±25.82b | 0.63±0.01b | 0.98±0.04b | 0.969 | |
TZ | L0 | 2.82±0.24c | 0.057±0.01b | 10.28±0.03c | 49.11±0.17b | 0.07±0.01d | 1.91±0.09a | 0.998 |
L1 | 4.14±0.31b | 0.087±0.01a | 8.51±0.03bc | 52.75±0.15b | 0.30±0.02b | 2.05±0.05a | 0.998 | |
L2 | 4.71±0.14a | 0.060±0.01b | 5.69±0.74b | 101.01±15.06a | 0.29±0.01b | 1.90±0.04a | 0.998 | |
L3 | 3.93±0.10b | 0.051±0.01b | 9.61±2.28a | 110.29±34.99a | 0.45±0.07a | 2.21±0.30a | 0.988 | |
L4 | 1.85±0.25d | 0.023±0.01c | 5.84±1.37b | 98.65±1.45a | 0.13±0.01c | 1.72±0.07a | 0.969 | |
TV | L0 | 3.19±0.07d | 0.053±0.00a | 7.33±0.03cd | 75.26±0.02b | 0.35±0.01b | 1.82±0.18b | 0.989 |
L1 | 4.66±0.19b | 0.061±0.04a | 9.69±1.31b | 157.12±30.21a | 0.37±0.11b | 2.65±0.06a | 0.968 | |
L2 | 5.84±0.33a | 0.054±0.00a | 16.41±0.11a | 133.87±0.92a | 0.82±0.05a | 2.44±0.15a | 0.999 | |
L3 | 3.95±0.10c | 0.052±0.00a | 8.61±1.31bc | 89.29±0.92b | 0.42±0.06b | 1.60±0.02b | 0.989 | |
L4 | 2.43±0.05e | 0.047±0.01a | 6.57±1.52d | 68.79±10.67b | 0.21±0.03c | 1.49±0.04b | 0.998 |
表1 不同光强对光合参数的影响
Table 1 Effect of different light intensities on photosynthetic parameter
物种Species | 处理 Treatments | 最大净光合速率Pm (μmol·m-2·s-1) | 表观量子效率 AQY (μmol·m-2·s-1) | 光补偿点 LCP (μmol·m-2·s-1) | 光饱和点 LSP (μmol·m-2·s-1) | 暗呼吸速率 Rd (μmol·m-2·s-1) | 水分利用效率WUE (μmol·mmol-1) | 决定 系数 R2 |
---|---|---|---|---|---|---|---|---|
CP | L0 | 5.54±0.17b | 0.023±0.01c | 35.96±7.09a | 123.66±29.91a | 0.77±0.04b | 2.54±0.11a | 0.999 |
L1 | 6.70±0.48ab | 0.042±0.00b | 21.83±1.55b | 195.94±21.78bc | 1.02±0.13b | 2.57±0.08a | 0.999 | |
L2 | 7.07±0.53a | 0.061±0.01a | 27.10±7.49ab | 257.44±28.84c | 1.74±0.21a | 2.02±0.11a | 0.989 | |
L3 | 6.49±1.22ab | 0.043±0.01bc | 28.91±5.99ab | 159.83±10.71ab | 0.89±0.07b | 2.53±0.32a | 0.988 | |
L4 | 3.79±0.27c | 0.039±0.01bc | 10.94±2.29c | 138.68±8.18c | 0.31±0.19c | 2.15±0.04a | 0.998 | |
TF | L0 | 3.25±0.07b | 0.040±0.00a | 22.01±1.68a | 106.40±2.77b | 0.88±0.05ab | 1.12±0.04b | 0.999 |
L1 | 4.93±0.13a | 0.043±0.01ab | 26.76±1.68a | 174.81±8.51a | 0.89±0.02ab | 1.72±0.01a | 0.996 | |
L2 | 4.50±0.76a | 0.032±0.00ab | 25.88±8.16a | 169.21±36.71a | 0.63±0.44b | 2.01±0.20a | 0.988 | |
L3 | 3.06±0.08b | 0.030±0.00ab | 35.51±0.83a | 137.12±5.70ab | 1.05±0.03a | 1.17±0.11b | 0.998 | |
L4 | 1.93±0.06c | 0.023±0.02b | 35.51±1.46a | 98.53±25.82b | 0.63±0.01b | 0.98±0.04b | 0.969 | |
TZ | L0 | 2.82±0.24c | 0.057±0.01b | 10.28±0.03c | 49.11±0.17b | 0.07±0.01d | 1.91±0.09a | 0.998 |
L1 | 4.14±0.31b | 0.087±0.01a | 8.51±0.03bc | 52.75±0.15b | 0.30±0.02b | 2.05±0.05a | 0.998 | |
L2 | 4.71±0.14a | 0.060±0.01b | 5.69±0.74b | 101.01±15.06a | 0.29±0.01b | 1.90±0.04a | 0.998 | |
L3 | 3.93±0.10b | 0.051±0.01b | 9.61±2.28a | 110.29±34.99a | 0.45±0.07a | 2.21±0.30a | 0.988 | |
L4 | 1.85±0.25d | 0.023±0.01c | 5.84±1.37b | 98.65±1.45a | 0.13±0.01c | 1.72±0.07a | 0.969 | |
TV | L0 | 3.19±0.07d | 0.053±0.00a | 7.33±0.03cd | 75.26±0.02b | 0.35±0.01b | 1.82±0.18b | 0.989 |
L1 | 4.66±0.19b | 0.061±0.04a | 9.69±1.31b | 157.12±30.21a | 0.37±0.11b | 2.65±0.06a | 0.968 | |
L2 | 5.84±0.33a | 0.054±0.00a | 16.41±0.11a | 133.87±0.92a | 0.82±0.05a | 2.44±0.15a | 0.999 | |
L3 | 3.95±0.10c | 0.052±0.00a | 8.61±1.31bc | 89.29±0.92b | 0.42±0.06b | 1.60±0.02b | 0.989 | |
L4 | 2.43±0.05e | 0.047±0.01a | 6.57±1.52d | 68.79±10.67b | 0.21±0.03c | 1.49±0.04b | 0.998 |
1 | Qin F F, Li Z H, Liu X B, et al. Effects of exogenous 2, 4-epibrassinolide on the growth and photosynthesis of alfalfa under high temperature and low light stress in summer. Acta Prataculturae Sinica, 2020, 29(9): 146-160. |
覃凤飞, 李志华, 刘信宝, 等. 外源2, 4表油菜素内酯对越夏期高温与弱光胁迫下紫花苜蓿生长和光合性能的影响. 草业学报, 2020, 29(9): 146-160. | |
2 | Gao Z, Khalid M, Jan F, et al. Effects of light-regulation and intensity on the growth, physiological and biochemical properties of Aralia elata (miq.)seedlings. South African Journal of Botany, 2019(121): 456-462. |
3 | Ye S, Shao Q, Xu M, et al. Effects of light quality on morphology, enzyme activities, and bioactive compound contents in Anoectochilus roxburghii. Frontiers in Plant Science, 2017(8): 1-7. |
4 | Fan X, Cai J, Liu J P, et al. Effect of partial shading on the morphological plasticity and biomass allocation of Potentilla anserina. Acta Prataculturae Sinica, 2016(3): 172-180. |
樊星, 蔡捡, 刘金平, 等. 局部遮光对鹅绒委陵菜基株形态塑性及生物量配置的影响. 草业学报, 2016(3): 172-180. | |
5 | Ma T G, Li X Y, Lin L S, et al. The effects of shade on leaf traits and water physiological characteristics in Alhagi sparsifolia. Acta Ecologica Sinica, 2018, 38(23): 203-211. |
马天光, 李向义, 林丽莎, 等. 遮阴对骆驼刺叶性状和水分生理的影响. 生态学报, 2018, 38(23): 203-211. | |
6 | Shang S J, Wang Y J, Wang N, et al. Effects of light intensity on physiological and growth characteristics of Paeonia suffruticosa var. papaveracea. Chinese Journal of Ecology, 2020, 39(9): 2963-2973. |
尚三娟, 王义婧, 王楠, 等. 光照强度对紫斑牡丹生理及生长特性的影响. 生态学杂志, 2020, 39(9): 2963-2973. | |
7 | Yu Y Y, Hu D, Wang X L, et al. Characteristics of light intensity and light quality in different types of shade environments in urban areas. Acta Ecologica Sinica, 2015, 35(23): 7748-7755. |
于盈盈, 胡聃, 王晓琳, 等. 城市不同遮阴环境下光强和光质特征. 生态学报, 2015, 35(23): 7748-7755. | |
8 | Shafiq I, Hussain S, Raza M A, et al. Crop photosynthetic response to light quality and light intensity. Journal of Integrative Agriculture, 2021, 20(1): 4-23. |
9 | Vialet-Chabrand S, Matthews J S A, Simkin A J, et al. Importance of fluctuations in light on plant photosynthetic acclimation. Plant Physiology, 2017, 173(4): 2163-2179. |
10 | Deng L, Wen M, Guo W, et al. Effects of drought stress and rehydration on physiology and biochemistry of leaf color in four species of Commelinaceae. Chinese Journal of Ecology, 2020, 39(2): 478-486. |
邓磊, 温敏, 郭微, 等. 干旱胁迫及复水对4种鸭跖草科植物叶色生理生化的影响. 生态学杂志, 2020, 39(2): 478-486. | |
11 | Sharma A, Kumar V, Shahzad B, et al. Photosynthetic response of plants under different abiotic stresses: A review. Journal of Plant Growth Regulation, 2020, 39(2): 509-531. |
12 | Li C, Luo Q, Weng S F. Commonly used species of Commelinaceae and their landscape application in Guangzhou city parks. Chinese Journal of Tropical Agriculture, 2016, 36(3): 87-91. |
李灿, 罗倩, 翁殊斐. 广州城市公园常用鸭跖草科植物及其园林配置应用. 热带农业科学, 2016, 36(3): 87-91. | |
13 | Pan D M, Zhang Q P, Lu L Z, et al. Study on total flavonoids purification by macroporous resin and antioxidant activity of flavonoids in Commelinaeherba. Chinese Journal of Modern Applied Pharmacy, 2018, 35(2): 231-234. |
潘冬梅, 张巧萍, 卢丽珠, 等. 鸭跖草总黄酮的大孔树脂纯化工艺及抗氧化活性研究. 中国现代应用药学, 2018, 35(2): 231-234. | |
14 | Pik D, Lucero J E, Lortie C J, et al. Light intensity and seed density differentially affect the establishment, survival, and biomass of an exotic invader and three species of native competitors. Community Ecology, 2020, 21(3): 259-272. |
15 | Xiong J, Wang C, Xing W L, et al. Morphological and physiological responses of Ardisia crenata seedlings under different light intensities. Plant Science Journal, 2018, 36(5): 736-744. |
熊静, 王臣, 邢文黎, 等. 朱砂根幼苗在不同光照强度下的形态和生理响应. 植物科学学报, 2018, 36(5): 736-744. | |
16 | Zhu T X, Gao Y, Gao K, et al. Organ biomass and resource allocation in response to drought stress in Jerusalem artichoke. Acta Ecologica Sinica, 2019, 39(21): 232-237. |
朱铁霞, 高阳, 高凯, 等. 干旱胁迫下菊芋各器官生物量及物质分配规律. 生态学报, 2019, 39(21): 232-237. | |
17 | Jumrani K, Bhatia V S. Influence of different light intensities on specific leaf weight, stomatal density photosynthesis and seed yield in soybean. Plant Physiology Reports, 2020, 25(2): 277-283. |
18 | Li Z L, Guo K X, Zhou S B, et al. Effects of light intensity on biological characteristics, physiological indexes and flavone content of Kalimeris indica. Acta Prataculturae Sinica, 2014, 23(4): 162-170. |
李中林, 郭开秀, 周守标, 等. 光强对马兰形态、生理及黄酮类化合物含量的影响. 草业学报, 2014, 23(4): 162-170. | |
19 | Chen M, Zeng X, Liu Y, et al. An orthogonal design of light factors to optimize growth, photosynthetic capability and metabolite accumulation of Anoectochilus roxburghii (Wall.) Lindl. Scientia Horticulturae, 2021, 288: 210-212. |
20 | Wei W, Hou Y P, Peng S L, et al. Effects of light intensity on growth and biomass allocation of invasive plants Mikania micrantha and Chromolaena odorata. Acta Ecologica Sinica, 2017, 37(18): 6021-6028. |
魏巍, 侯玉平, 彭少麟, 等. 不同光照强度对入侵植物薇甘菊(Mikania micrantha)和飞机草(Chromolaena odorata)生长及生物量分配的影响. 生态学报, 2017, 37(18): 6021-6028. | |
21 | Kim Y, Hye J, Yang M, et al. Light spectral and thermal properties govern biomass allocation in tomato through morphological and physiological changes. Environmental and Experimental Botany, 2019, 157: 228-240. |
22 | Guenni O, Romero E, Guédez Y, et al. Influence of low light intensity on growth and biomass allocation, leaf photosynthesis and canopy radiation interception and use in two forage species of Centrosema (DC.) Benth. Grass and Forage Science, 2018, 73(4): 967-978. |
23 | Tan S J, Li T, Yu S R, et al. Effects of light intensity on growth and biomass allocation of seedlings of the eight mangrove species. Ecological Science, 2020, 39(3): 139-146. |
谭淑娟, 李婷, 余素睿, 等. 光照强度对8种红树植物幼苗生长和生物量分配的影响. 生态科学, 2020, 39(3): 139-146. | |
24 | Xie R J, Zhang X J, Liu J P, et al. Synergistic effects of drought and shade on component morphology and biomass allocation of Arthraxon hispidus. Pratacultural Science, 2017, 34(7): 1496-1505. |
谢瑞娟, 张小晶, 刘金平, 等. 干旱和遮阴对荩草构件形态及生物量分配的影响. 草业科学, 2017, 34(7): 1496-1505. | |
25 | Ncise W, Daniels C W, Nchu F. Effects of light intensities and varying watering intervals on growth, tissue nutrient content and antifungal activity of hydroponic cultivated Tulbaghia violacea L. under greenhouse conditions. Heliyon, 2020, 6(5): 30-36. |
26 | Yan Z, He D, Niu G, et al. Evaluation of growth and quality of hydroponic lettuce at harvest as affected by the light intensity, photoperiod and light quality at seedling stage. Scientia Horticulturae, 2019, 248: 138-144. |
27 | Xie D J, Li J W, Ye Y J, et al. Effects of light quality on growth, and physiological and biochemical traits of Sarcandra glaba seedlings. Acta Prataculturae Sinica, 2020, 29(8): 104-115. |
谢德金, 李静文, 叶友杰, 等. 光质对草珊瑚幼苗生长及其生理生化基础的影响. 草业学报, 2020, 29(8): 104-115. | |
28 | Tang G L, Li X Y, Lin L S, et al. Change of different shading on moisture conditions and the physiological response in Alhagi sparsifolia. Chinese Journal of Plant Ecology, 2013, 37(4): 354-364. |
唐钢梁, 李向义, 林丽莎, 等. 骆驼刺在不同遮阴下的水分状况变化及其生理响应. 植物生态学报, 2013, 37(4): 354-364. | |
29 | Colonna E, Rouphael Y, Barbieri G, et al. Nutritional quality of ten leafy vegetables harvested at two light intensities. Food Chemistry, 2016, 199: 702-710. |
30 | Ji F, Wei S, Liu N, et al. Growth of cucumber seedlings in different varieties as affected by light environment. International Journal of Agricultural and Biological Engineering, 2020, 13(5): 73-78. |
31 | Feng S L, Li B Y, Lv G L, et al. Response characteristics of leaf water potential in different growth stages of Amorpha fruticosa seedlings to drought stress and re-watering. Acta Agrestia Sinica, 2020, 28(5): 1363-1371. |
冯树林, 李博渊, 吕国利, 等. 紫穗槐幼苗不同生长阶段叶水势对干旱胁迫与复水的响应特征. 草地学报, 2020, 28(5): 1363-1371. | |
32 | Liu J, Lu Y, Hua W, et al. A new light on photosystem Ⅱ maintenance in oxygenic photosynthesis. Frontiers in Plant Science, 2019, 10: 975-980. |
33 | Wang Q, Zhang X W, Huang Y J, et al. Synergistic effects of light environment and temperature on net photosynthetic rate, transpiration rate and instant water-use efficiency of Phytolacca americana. Plant Physiology Journal, 2021, 57(1): 187-194. |
王强, 张欣薇, 黄英金, 等. 光环境和温度对商陆净光合速率, 蒸腾速率和瞬时水分利用效率的协同影响. 植物生理学报, 2021, 57(1): 187-194. | |
34 | Ghorbanzadeh P, Aliniaeifard S, Esmaeili M, et al. Dependency of growth, water use efficiency, chlorophyll fluorescence, and stomatal characteristics of lettuce plants to light intensity. Journal of Plant Growth Regulation, 2020, 20: 1-17. |
35 | Jin D, Zhang M R, Wang J J, et al. Effects of shading and drought stress on photosynthetic and chlorophyll fluorescence parameters of potted Dicranopteris dichotoma. Journal of Zhejiang A & F University, 2020, 37(6): 1054-1063. |
金迪, 张明如, 王佳佳, 等. 遮光与水分胁迫对盆栽芒萁光合与叶绿素荧光参数的影响. 浙江农林大学学报, 2020, 37(6): 1054-1063. | |
36 | Zhang M Y, Yang Z Q, Hou M Y. Simulation of light response of photosynthesis of Cucumis sativus L. leaves under water stress. Chinese Journal of Agrometeorology, 2017, 38(10): 644-654. |
37 | Lawson T, Vialet-Chabrand S. Speedy stomata, photosynthesis and plant water use efficiency. New Phytologist, 2019, 221(1): 93-98. |
38 | Zhou Y, Zhang R, Wang S X, et al. Comparative analysis on responses of vegetation productivity relative to different drought monitor patterns in Karst regions of Southwestern China. Applied Ecology and Environmental Research, 2019, 17: 85-105. |
39 | Liu H Y, Yu Y H, Xiong K N, et al. Response characteristics of photosynthesis to light intensity of three non-wood forests tree species in Karst habitat. Journal of Southern Agriculture, 2021(6): 1-14. |
刘海燕, 喻阳华, 熊康宁, 等. 喀斯特生境3种经济林树种光合作用对光强的响应特征. 南方农业学报, 2021(6): 1-14. | |
40 | Kwon O K, Mekapogu M, Kim K S. Effect of salinity stress on photosynthesis and related physiological responses in carnation (Dianthus caryophyllus). Horticulture, Environment, and Biotechnology, 2019, 60(6): 831-839. |
41 | Zhong P A, Shao D, Huang Y J, et al. The photosynthesis characteristics and instantaneous water-use efficiency of Capsicum annuum under different light conditions. Chinese Journal of Ecology, 2019, 38(7): 2065-2071. |
钟平安, 邵东, 黄英金, 等. 不同光环境下辣椒光合特性和瞬时水分利用效率. 生态学杂志, 2019, 38(7): 2065-2071. | |
42 | Ni X, Wu S S, Zhou B Z, et al. Light response characteristic of Phyllostachys edulis under drought treatment. Journal of Nanjing Forestry University (Natural Sciences Edition), 2018, 42(2): 47-51. |
倪霞, 吴思思, 周本智, 等. 模拟干旱处理下毛竹光响应特征分析. 南京林业大学学报(自然科学版), 2018, 42(2): 47-51. | |
43 | Li S Z, Zhang L M, Gao W S, et al. Effects of re-watering after drought on leaf photosynthetic light response characteristics of sugar beet. Acta Prataculturae Sinica, 2020, 29(11): 198-204. |
李思忠, 张立明, 高卫时, 等. 滴灌模式下旱后复水对甜菜叶丛期光合光响应特性的影响. 草业学报, 2020, 29(11): 198-204. | |
44 | Wu H M, Shuang S P, Zhang J Y, et al. Photodamage to photosystem in a typically shade-tolerant species Panax notoginseng exposed to a sudden increase in light intensity. Chinese Journal of Plant Ecology, 2021, 45(4): 404-419. |
武洪敏, 双升普, 张金燕, 等. 短期生长环境光强骤增导致典型阴生植物三七光系统受损的机制. 植物生态学报, 2021, 45(4): 404-419. |
[1] | 郭丰辉, 丁勇, 马文静, 李贤松, 李西良, 侯向阳. 母体放牧经历对羊草克隆后代干旱敏感性的影响[J]. 草业学报, 2021, 30(8): 119-126. |
[2] | 彭磊, 张力, 周小龙, 万彦博, 师庆东. 水分胁迫对新疆准东地区钠猪毛菜的生活史对策的影响[J]. 草业学报, 2021, 30(5): 65-74. |
[3] | 陈斌, 刘筱玮, 贾琳, 李子葳, 杨宇佳, 岳莉然, 何淼. 不同光强对4种鸭跖草科植物茎秆性状和力学特征的影响[J]. 草业学报, 2021, 30(12): 103-116. |
[4] | 范高华, 黄迎新, 赵学勇, 神祥金. 种群密度对沙米异速生长的影响[J]. 草业学报, 2017, 26(3): 53-64. |
[5] | 刘秀香,杨允菲. 松嫩平原不同生境芦苇生殖分株的异速生长分析[J]. 草业学报, 2012, 21(4): 313-318. |
[6] | 李有涵,谢昭良,解新明. 5个象草品种的构件生物量特征及分配动态[J]. 草业学报, 2011, 20(5): 11-18. |
[7] | 武建双,沈振西,张宪洲,付刚. 藏北高原人工垂穗披碱草种群生物量分配对施氮处理的响应[J]. 草业学报, 2009, 18(6): 113-121. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||