1 |
Lin D H, Gu R S. Milk vetch in China. Fuzhou: Fujian Science and Technology Press, 2000: 52-67.
|
|
林多胡, 顾荣申. 中国紫云英. 福州: 福建科学技术出版社, 2000: 52-67.
|
2 |
Crews T E, Peoples M B. Legume versus fertilizer sources of nitrogen: Ecological tradeoffs and human needs. Agriculture, Ecosystems and Environment, 2004, 102(3): 279-297.
|
3 |
Voisin A S, Gueguen J, Huyghe C, et al. Legumes for feed, food, biomaterials and bioenergy in Europe: A review. Agronomy for Sustainable Development, 2014, 34(2): 361-380.
|
4 |
Gao S J, Zhou G P, Cao W D. Effects of milk vetch (Astragalus sinicus) as winter green manure on rice yield and rate of fertilizer application in rice paddies in South China. Journal of Plant Nutrition and Fertilizers, 2020, 26(12): 2115-2126.
|
|
高嵩涓, 周国朋, 曹卫东. 南方稻田紫云英作冬绿肥的增产节肥效应与机制. 植物营养与肥料学报, 2020, 26(12): 2115-2126.
|
5 |
Chen J R, Qin W J, Chen X F, et al. Application of Chinese milk vetch affects rice yield and soil productivity in a subtropical double-rice cropping system. Journal of Integrative Agriculture, 2020, 19(8): 2116-2126.
|
6 |
Yang Z P, Xu M G, Zheng S X, et al. Effects of long-term winter planted green manure on physical properties of reddish paddy soil under a double-rice cropping system. Journal of Integrative Agriculture, 2012, 11(4): 655-664.
|
7 |
Zhang X X, Zhang R J, Gao J S, et al. Thirty-one years of rice-rice-green manure rotations shape the rhizosphere microbial community and enrich beneficial bacteria. Soil Biology and Biochemistry, 2017, 104: 208-217.
|
8 |
Lu P, Shan Y H, Yang L Z, et al. Influence of green manure crop on nitrogen concentration in soil solution of paddy field and rice yield. Soils, 2006, 38(3): 270-275.
|
|
卢萍, 单玉华, 杨林章, 等. 绿肥轮作还田对稻田土壤溶液氮素变化及水稻产量的影响. 土壤, 2006, 38(3): 270-275.
|
9 |
Cai S Y, Pittelkow C M, Zhao X, et al. Winter legume-rice rotations can reduce nitrogen pollution and carbon footprint while maintaining net ecosystem economic benefits. Journal of Cleaner Production, 2018, 195: 289-300.
|
10 |
Gao P, Yang Z C, Gao J S, et al. Study on the efficiency of inoculating rhizobia into Astragalus sinicus L. Hunan Agricultural Sciences, 2020(3): 20-22.
|
|
高鹏, 杨志长, 高菊生, 等. 紫云英接种根瘤菌效果研究. 湖南农业科学, 2020(3): 20-22.
|
11 |
Burghardt L T, Guhlin J, Chun C L, et al. Transcriptomic basis of genome by genome variation in a legume-rhizobia mutualism. Molecular Ecology, 2017, 26(21): 6122-6135.
|
12 |
Sulieman S, Schulze J. The efficiency of nitrogen fixation of the model legume Medicago truncatula (Jemalong A17) is low compared to Medicago sativa. Journal of Plant Physiology, 2010, 167(9): 683-692.
|
13 |
Wu H, Zhong Z D, Fan W, et al. Symbiotic compatibility among eight elite soybean rhizobia strains and twenty-seven soybean cultivars from different planting regions. Soybean Science, 2017, 36(3): 405-418.
|
|
伍惠, 钟喆栋, 樊伟, 等. 8株优良大豆根瘤菌与不同地区27个大豆主栽品种的匹配性研究. 大豆科学, 2017, 36(3): 405-418.
|
14 |
Kazmierczak T, Nagymihály M, lamouche F, et al. Specific host-responsive associations between Medicago truncatula accessions and Sinorhizobium strains. Molecular Plant-Microbe Interactions, 2017, 30(5): 399-409.
|
15 |
Guo X W, Zhang X X, Zhang Z M, et al. Characterization of Astragalus sinicus rhizobia by restriction fragment length polymorphism analysis of chromosomal and nodulation genes regions. Current Microbiology, 1999, 39(6): 358-364.
|
16 |
Gao J L, Terefework Z D, Chen W X, et al. Genetic diversity of rhizobia isolated from Astragalus adsurgens growing in different geographical regions of China. Journal of Biotechnology, 2001, 91(2): 155-168.
|
17 |
Zhang X X, Guo X W, Terefework Z, et al. Genetic diversity among rhizobial isolates from field-grown Astragalus sinicus of southern China. Systematic and Applied Microbiology, 1999, 22(2): 312-320.
|
18 |
Zhang X X, Li F D, Cao Y Z, et al. Molecular genetics of Astragalus sincus rhizobia. Journal of Huazhong Agricultural University, 2003, 22(1): 77-83.
|
|
张学贤, 李阜棣, 曹燕珍, 等. 紫云英根瘤菌分子遗传学研究进展. 华中农业大学学报, 2003, 22(1): 77-83.
|
19 |
Zhong S J, Lin C, Li W X, et al. Effect of matching Astragalus sinicus with rhizobium on nodule formation and nitrogen fixation. Fujian Journal of Agricultural Sciences, 2014, 29(7): 691-697.
|
|
钟少杰, 林诚, 李文霞, 等. 不同紫云英品种与根瘤菌匹配对结瘤固氮的影响. 福建农业学报, 2014, 29(7): 691-697.
|
20 |
Bao S D. Soil and agricultural chemistry analysis (Third Edition). Beijing: China Agricultural Press, 2000.
|
|
鲍士旦. 土壤农化分析 (第三版). 北京: 中国农业出版社, 2000.
|
21 |
Xu H. Cloning and functional identification of the MHK-RGS1 gene, a novel gene involved in symbiotic nitrogen fixation of Mesorhizobium huakuii 7653R. Wuhan: Huazhong Agricultural University, 2011.
|
|
徐慧. 华癸中慢生根瘤菌7653R共生固氮新基因MHK-RGS1的克隆与功能鉴定. 武汉: 华中农业大学, 2011.
|
22 |
Chou M X, Wei X Y. Review of research advancements on the molecular basis and regulation of symbiotic nodulation of legumes. Chinese Journal of Plant Ecology, 2010, 34(7): 876-888.
|
|
丑敏霞, 魏新元. 豆科植物共生结瘤的分子基础和调控研究进展. 植物生态学报, 2010, 34(7): 876-888.
|
23 |
Zeng Z H, Hu Y G, Chen W X, et al. Review on studies on the important role of symbiotic nitrogen fixation in agriculture and livestock production and the factors affecting its efficiency. Chinese Journal of Eco-Agriculture, 2006, 14(4): 21-24.
|
|
曾昭海, 胡跃高, 陈文新, 等. 共生固氮在农牧业上的作用及影响因素研究进展. 中国生态农业学报, 2006, 14(4): 21-24.
|
24 |
Zhang J J, Shang Y M, Liu C Z, et al. Mesorhizobium jarvisii is a dominant and widespread species symbiotically efficient on Astragalus sinicus in the Southwest of China. Systematic and Applied Microbiology, 2020, 43(5): 126102.
|
25 |
Cheng G J, Li Y G, Zhou J C. Cloning and identification of opa22, a new gene involved in nodule formation by Mesorhizobium huakuii. FEMS Microbiol Letters, 2006, 257(1): 152-157.
|
26 |
Cheng G J, Li Y G, Xie B, et al. Cloning and identification of lpsH, a novel gene playing a fundamental role in symbiotic nitrogen fixation of Mesorhizobium huakuii. Current Microbiology, 2007, 54(5): 371-375.
|
27 |
Wang S M, Hao B H, Li J R, et al. Whole-genome sequencing of Mesorhizobium huakuii 7653R provides molecular insights into host specificity and symbiosis island dynamics. BMC Genomics, 2014, 15(1): 1-17.
|
28 |
Peng J L, Hao B H, Liu L, et al. RNA-seq and microarrays analyses reveal global differential transcriptomes of Mesorhizobium huakuii 7653R between bacteroids and free-living cells. PLoS One, 2014, 9(4): 1-20.
|
29 |
Liu F, Yi M, Liu X, et al. Symbiotic performances of three Mesorhizobium huakuii strains inoculated to Chinese milk vetch varieties. Frontiers in Plant Science, 2020, 11: 599400.
|
30 |
Han Z S, Zhang M N, Liang X Z. Effect of rhizobium inoculation on nitrogen fixation activity and biomass of Medicago sativa L. Acta Agriculturae Boreali-Sinica, 2016, 31(4): 214-219.
|
|
韩志顺, 郑敏娜, 梁秀芝. 接种不同根瘤菌对紫花苜蓿固氮效能及生物量的影响. 华北农学报, 2016, 31(4): 214-219.
|
31 |
Pan J, Fan Y, Li R, et al. Screening of high efficient symbiotic rhizobium for Medicago sativa cv. Gannong No. 3 and M. sativa cv. Longdong. Pratacultural Science, 2016, 33(8): 1536-1549.
|
|
潘佳, 范燕, 李荣, 等. 甘农3号和陇东苜蓿高效共生根瘤菌菌株的筛选. 草业科学, 2016, 33(8): 1536-1549.
|
32 |
Zheng H M, Zhai N N, Mao Y L, et al. Comparison of nodulation competition among different strains of Astragalus sinicus rhizobia. Jiangsu Agricultural Sciences, 2014, 42(11): 403-406.
|
|
郑会明, 翟娜娜, 毛怡玲, 等. 紫云英根瘤菌不同菌株间结瘤竞争能力的比较. 江苏农业科学, 2014, 42(11): 403-406.
|
33 |
Shi H F, Guo Z F. Advances in research on germplasm resources and genetic breeding of Astragalus sinicus. Pratacultural Science, 2020, 37(12): 2507-2513.
|
|
施海帆, 郭振飞. 紫云英种质资源与遗传育种研究进展. 草业科学, 2020, 37(12): 2507-2513.
|
34 |
He C M, Liu C L, Wang L M, et al. Comparative study on local cultivars of Astragalus sinicus. Chinese Journal of Tropical Crops, 2020, 41(3): 441-448.
|
|
何春梅, 刘彩玲, 王利民, 等. 紫云英地方种质资源品种比较试验. 热带作物学报, 2020, 41(3): 441-448.
|