草业学报 ›› 2023, Vol. 32 ›› Issue (5): 138-146.DOI: 10.11686/cyxb2022237
• 研究论文 • 上一篇
李超男1(), 王磊1(), 周继强2, 赵长兴1, 谢晓蓉3, 刘金荣1()
收稿日期:
2022-05-26
修回日期:
2022-07-02
出版日期:
2023-05-20
发布日期:
2023-03-20
通讯作者:
刘金荣
作者简介:
E-mail: liujinr@lzu.edu.cn基金资助:
Chao-nan LI1(), Lei WANG1(), Ji-qiang ZHOU2, Chang-xing ZHAO1, Xiao-rong XIE3, Jin-rong LIU1()
Received:
2022-05-26
Revised:
2022-07-02
Online:
2023-05-20
Published:
2023-03-20
Contact:
Jin-rong LIU
摘要:
为全面认识微塑料对草地农业生态系统的毒性效应和生态风险,以低密度聚乙烯(mLDPE)和聚乳酸(mPLA)2种不同类型的微塑料为试验对象进行盆栽试验,探究不同浓度下(0.1%、0.5%、1%、5%、10%,w/w,质量分数)两种类型的微塑料对紫花苜蓿生长和生理特性的影响。研究结果发现:相较于对照组,高浓度(10%)处理下,mPLA处理组紫花苜蓿生物量、总叶绿素含量和净光合速率显著降低,mLDPE处理组则是地上生物量与净光合速率显著降低;超氧化物岐化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性和丙二醛(MDA)含量随微塑料添加浓度升高而增加,mPLA处理组中SOD、CAT活性和MDA含量在10%浓度时分别显著提高了56.68%、85.63%和67.30%,mLDPE处理组中仅有SOD和POD的活性在10%浓度时影响显著。结果表明,微塑料添加对紫花苜蓿的毒害作用与微塑料的类型和浓度有关。高浓度mPLA能够损伤植物光合系统,影响植物的光合作用,对植物造成氧化损伤,从而抑制紫花苜蓿植株生长,其影响强于mLDPE。
李超男, 王磊, 周继强, 赵长兴, 谢晓蓉, 刘金荣. 微塑料对紫花苜蓿生长及生理特性的影响[J]. 草业学报, 2023, 32(5): 138-146.
Chao-nan LI, Lei WANG, Ji-qiang ZHOU, Chang-xing ZHAO, Xiao-rong XIE, Jin-rong LIU. Effect of microplastics on the growth and physiological characteristics of alfalfa (Medicago sativa)[J]. Acta Prataculturae Sinica, 2023, 32(5): 138-146.
图1 微塑料对紫花苜蓿地上生物量及地下生物量的影响不同小写字母表示各处理间差异显著(P<0.05),M1~M5分别表示微塑料添加浓度为0.1%、0.5%、1%、5%和10% (w/w),mPLA表示聚乳酸微塑料处理,mLDPE表示低密度聚乙烯微塑料处理,下同。Different lowercase letters indicate that there are significant differences among different treatments (P<0.05), M1-M5 represented 0.1%, 0.5%, 1%, 5% and 10% (w/w) of microplastics. mPLA represented polylactic acid microplastic treatment, mLDPE represented low density polyethylene microplastic treatment, the same below.
Fig.1 Effect of microplastics on aboveground biomass and underground biomass of alfalfa
处理 Treatment | 浓度 Dose | 根长 Root length (cm) | 根系平均直径 Mean root diameter (cm) | 根系总表面积 Total root surface area (cm2) | 根系总体积 Total root volume (cm3) | 根尖数 Root tip number |
---|---|---|---|---|---|---|
CK | 0 | 1879.00±37.00ab | 1.31±0.06a | 713.20±12.70ab | 25.68±2.98a | 8778.33±1018.03ab |
mPLA | M1 | 1855.14±65.22abc | 0.96±0.05bc | 558.77±19.59c | 13.47±1.10bcd | 8607.00±159.69ab |
M2 | 2000.96±59.24ab | 1.00±0.04bc | 629.46±35.53abc | 15.79±1.41bc | 8654.33±775.82ab | |
M3 | 1923.91±307.79ab | 0.98±0.09bc | 591.09±104.66bc | 14.66±3.13bcd | 11059.33±2524.42a | |
M4 | 1616.32±127.25bcd | 0.94±0.04bc | 474.17±25.24cd | 11.11±0.58cd | 6829.00±493.84b | |
M5 | 1230.26±164.34d | 1.02±0.04bc | 393.16±54.96d | 10.03±1.55d | 6265.00±640.43b | |
mLDPE | M1 | 2259.86±243.13a | 1.28±0.02a | 761.44±34.72a | 23.70±1.13a | 8263.00±1024.47ab |
M2 | 1861.32±144.56abc | 1.27±0.05a | 541.68±25.88c | 17.08±0.27b | 8143.67±730.86ab | |
M3 | 1231.82±98.19d | 1.30±0.12a | 495.23±16.19cd | 16.13±1.81bc | 6023.00±406.59b | |
M4 | 1424.29±46.72cd | 1.12±0.04ab | 499.75±23.04cd | 13.99±1.12bcd | 6844.33±112.19b | |
M5 | 1370.77±113.76d | 0.90±0.07c | 628.22±42.09abc | 14.05±1.18bcd | 8552.67±1326.05ab |
表1 微塑料对紫花苜蓿根系形态指标的影响
Table 1 Effect of microplastics on root morphology of alfalfa
处理 Treatment | 浓度 Dose | 根长 Root length (cm) | 根系平均直径 Mean root diameter (cm) | 根系总表面积 Total root surface area (cm2) | 根系总体积 Total root volume (cm3) | 根尖数 Root tip number |
---|---|---|---|---|---|---|
CK | 0 | 1879.00±37.00ab | 1.31±0.06a | 713.20±12.70ab | 25.68±2.98a | 8778.33±1018.03ab |
mPLA | M1 | 1855.14±65.22abc | 0.96±0.05bc | 558.77±19.59c | 13.47±1.10bcd | 8607.00±159.69ab |
M2 | 2000.96±59.24ab | 1.00±0.04bc | 629.46±35.53abc | 15.79±1.41bc | 8654.33±775.82ab | |
M3 | 1923.91±307.79ab | 0.98±0.09bc | 591.09±104.66bc | 14.66±3.13bcd | 11059.33±2524.42a | |
M4 | 1616.32±127.25bcd | 0.94±0.04bc | 474.17±25.24cd | 11.11±0.58cd | 6829.00±493.84b | |
M5 | 1230.26±164.34d | 1.02±0.04bc | 393.16±54.96d | 10.03±1.55d | 6265.00±640.43b | |
mLDPE | M1 | 2259.86±243.13a | 1.28±0.02a | 761.44±34.72a | 23.70±1.13a | 8263.00±1024.47ab |
M2 | 1861.32±144.56abc | 1.27±0.05a | 541.68±25.88c | 17.08±0.27b | 8143.67±730.86ab | |
M3 | 1231.82±98.19d | 1.30±0.12a | 495.23±16.19cd | 16.13±1.81bc | 6023.00±406.59b | |
M4 | 1424.29±46.72cd | 1.12±0.04ab | 499.75±23.04cd | 13.99±1.12bcd | 6844.33±112.19b | |
M5 | 1370.77±113.76d | 0.90±0.07c | 628.22±42.09abc | 14.05±1.18bcd | 8552.67±1326.05ab |
1 | Thompson R C, Olsen Y, Mitchell R P, et al. Lost at sea: Where is all the plastic? Science, 2004, 304(5672): 838. |
2 | Isobe A, Uchiyama-Matsumoto K, Uchida K, et al. Microplastics in the Southern Ocean. Marine Pollution Bulletin, 2017, 114(1): 623-626. |
3 | Law K L, Thompson R C. Oceans. Microplastics in the seas. Science, 2014, 345(6193): 144-145. |
4 | Gigault J, Halle A, Baudrimont M, et al. Current opinion: What is a nanoplastic? Environmental Pollution, 2018, 235: 1030-1034. |
5 | Zhang Z, Cui Q, Chen L, et al. A critical review of microplastics in the soil-plant system: Distribution, uptake, phytotoxicity and prevention. Journal of Hazardous Materials, 2022, DOI: 10.1016/j.jhazmat.2021.127750. |
6 | Liang S, Han B, Niu Z P, et al. Source, migration and ecotoxicological effects of micro-plastics in freshwater. Environmental Engineering, 2021, 39(12): 1-9. |
梁帅, 韩冰, 牛泽普, 等. 淡水中微塑料的来源、迁移途径及生态毒理效应综述. 环境工程, 2021, 39(12): 1-9. | |
7 | Xu X B, Sun M X, Zhang L X, et al. Research progress and prospect of soil microplastic pollution. Journal of Agricultural Resources and Environment, 2021, 38(1): 1-9. |
徐湘博, 孙明星, 张林秀, 等. 土壤微塑料污染研究进展与展望. 农业资源与环境学报, 2021, 38(1): 1-9. | |
8 | Corradini F, Meza P, Eguiluz R, et al. Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Science of the Total Environment, 2019, 671: 411-420. |
9 | Fuller S, Gautam A. A procedure for measuring microplastics using pressurized fluid extraction. Environmental Science & Technology, 2016, 50(11): 5774-5780. |
10 | Scheurer M, Bigalke M. Microplastics in Swiss floodplain soils. Environmental Science & Technology, 2018, 52(6): 3591-3598. |
11 | Zhu Y E, Wen H X, Li T H X, et al. Distribution and sources of microplastics in farmland soil along the Fenhe River. Environmental Science, 2021, 42(8): 3894-3903. |
朱宇恩, 文瀚萱, 李唐慧娴, 等. 汾河沿岸农田土壤微塑料分布特征及成因解析. 环境科学, 2021, 42(8): 3894-3903. | |
12 | Meng Q. Study on the occurrence characteristics in Hetao area and the adsorption properties of glyphosate onto microplastics. Baotou: Inner Mongolia University of Science & Technology, 2020. |
孟青. 河套灌区土壤中微塑料的赋存特征及其对草甘膦的吸附性能研究. 包头: 内蒙古科技大学, 2020. | |
13 | Ren X W, Tang J C, Yu C, et al. Advances in research on the ecological effects of microplastic pollution on soil ecosystems. Journal of Agro-Environment Science, 2018, 37(6): 1045-1058. |
任欣伟, 唐景春, 于宸, 等. 土壤微塑料污染及生态效应研究进展. 农业环境科学学报, 2018, 37(6): 1045-1058. | |
14 | Xu X H, Hu H N, Chen Y. Study on the effect of polyethylene microplastics on soybean growth. Soil and Fertilizer Sciences in China, 2021(6): 262-268. |
许学慧, 胡海娜, 陈颖. 聚乙烯微塑料对大豆生长的影响. 中国土壤与肥料, 2021(6): 262-268. | |
15 | Boots B, Russell C W, Green D S. Effects of microplastics in soil ecosystems: Above and below ground. Environmental Science & Technology, 2019, 53(19): 11496-11506. |
16 | Li H, Liu L. Short-term effects of polyethene and polypropylene microplastics on soil phosphorus and nitrogen availability. Chemosphere, 2021, 291(P2): 132984. |
17 | Feng X Y, Sun Y H, Zhang S W, et al. Ecological effects of microplastics on soil-plant systems. Acta Pedologica Sinica, 2021, 58(2): 299-313. |
冯雪莹, 孙玉焕, 张书武, 等. 微塑料对土壤-植物系统的生态效应. 土壤学报, 2021, 58(2): 299-313. | |
18 | Lian J P, Shen M M, Liu W T. Effects of microplastics on wheat seed germination and seedling growth. Journal of Agro-Environment Science, 2019, 38(4): 737-745. |
连加攀, 沈玫玫, 刘维涛. 微塑料对小麦种子发芽及幼苗生长的影响. 农业环境科学学报, 2019, 38(4): 737-745. | |
19 | Machado A A D, Lau C W, Kloas W, et al. Microplastics can change soil properties and affect plant performance. Environmental Science & Technology, 2019, 53(10): 6044-6052. |
20 | Li L Z, Zhou Q, Yin N, et al. Uptake and accumulation of microplastics in an edible plant.Chinese Science Bulletin, 2019, 64(9): 928-934. |
李连祯, 周倩, 尹娜, 等. 食用蔬菜能吸收和积累微塑料. 科学通报, 2019, 64(9): 928-934. | |
21 | Wang X, Ma Y X, Li J. Nutritional components and main biological characteristics of alfalfa. Pratacultural Science, 2003(10): 39-41. |
王鑫, 马永祥, 李娟. 紫花苜蓿营养成分及主要生物学特性. 草业科学, 2003(10): 39-41. | |
22 | Hu B F, Huang H L, Ji Y Z, et al. Evaluation of the optimum concentration of chlorophyll extract for determination of chlorophyll content by spectrophotometry. Pratacultural Scicnce, 2018, 35(8): 1965-1974. |
胡秉芬, 黄华梨, 季元祖, 等. 分光光度法测定叶绿素含量的提取液的适宜浓度. 草业科学, 2018, 35(8): 1965-1974. | |
23 | Gao J F. Experimental guidance for plant physiology. Beijing: Higher Education Press, 2006. |
高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006. | |
24 | Zhang S, Yang X, Gertsen H, et al. A simple method for the extraction and identification of light density microplastics from soil. Science of the Total Environment, 2018, 616/617: 1056-1065. |
25 | Asli S, Neumann P M. Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant, Cell & Environment, 2009, 32(5): 577-584. |
26 | Urbina M A, Correa F, Aburto F, et al. Adsorption of polyethylene microbeads and physiological effects on hydroponic maize. Science of the Total Environment, 2020, DOI: 10.1016/j.scitotenv.2020.140216. |
27 | Schwab F, Zhai G, Kern M, et al. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants-Critical review. Nanotoxicology, 2016, 10(3): 257-278. |
28 | Shan N, Habibul Z, Hojahmat M, et al. Effects of microplastics on ryegrass (Lolium perenne L.) uptake and accumulation of ciprofloxacin. Research of Environmental Sciences, 2020, 33(12): 2906-2912. |
单宁, 祖木热提·艾比布, 米丽班·霍加艾合买提, 等. 微塑料对黑麦草吸收和累积水体中环丙沙星的影响. 环境科学研究, 2020, 33(12): 2906-2912. | |
29 | Li R J, Li L Z, Zhang Y C, et al. Uptake and accumulation of microplastics in a cereal plant wheat. Chinese Science Bulletin, 2020, 65(20): 2120-2127. |
李瑞杰, 李连祯, 张云超, 等. 禾本科作物小麦能吸收和积累聚苯乙烯塑料微球. 科学通报, 2020, 65(20): 2120-2127. | |
30 | Bosker T, Bouwman L J, Brun N R, et al. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere, 2019, 226: 774-781. |
31 | Wang R Y, Yuan S L, Wen W W, et al. Effects of phosphorus on root growth and photosynthetic physiology of alfalfa seedlings under aluminum stress. Acta Prataculturae Sinica, 2021, 30(10): 53-62. |
王如月, 袁世力, 文武武, 等. 磷对铝胁迫紫花苜蓿幼苗根系生长和生理特征的影响. 草业学报, 2021, 30(10): 53-62. | |
32 | Lian Y H, Liu W T, Shi R Y, et al. Impact of polyethylene and polylactic acid microplastics on growth, physio-biochemistry and metabolism in soybean (Glycine max). China Environmental Science, 2022, 42(6): 2894-2903. |
廉宇航, 刘维涛, 史瑞滢, 等. 聚乙烯和聚乳酸微塑料对大豆生长和生理生化及代谢的影响. 中国环境科学, 2022, 42(6): 2894-2903. | |
33 | Wang C W, Liu Y, Song Z G, et al. Effects of microplastics and DBP on photosynthesis and nutritional quality of lettuce. Journal of Agro-Environment Science, 2021, 40(3): 508-516. |
王成伟, 刘禹, 宋正国, 等. 微塑料对DBP胁迫下生菜光合作用及品质的影响. 农业环境科学学报, 2021, 40(3): 508-516. | |
34 | Li Z X, Li R J, Li Q F, et al. Physiological response of cucumber (Cucumis sativus L.) leaves to polystyrene nanoplastics pollution. Chemosphere, 2020, 255: 127041. |
35 | Niu J F, Feng Z Z, Zhang W W, et al. Non-stomatal limitation to photosynthesis in Cinnamomum camphora seedings exposed to elevated O3. PLoS One, 2017, 9(6): e98572. |
36 | Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 1982, 33(1): 317-345. |
37 | Zhang C, Jian M F, Chen Y M, et al. Effects of polystyrene microplastics (PS-MPs) on the growth, physiology, and biochemical characteristics of Hydrilla verticillata. Chinese Journal of Applied Ecology, 2021, 32(1): 317-325. |
张晨, 简敏菲, 陈宇蒙, 等. 聚苯乙烯微塑料对黑藻生长及生理生化特征的影响. 应用生态学报, 2021, 32(1): 317-325. | |
38 | Gill S S, Gill N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 2010, 48(12): 909-930. |
39 | Jolanda E J W, Herman M M C. Oxidative damage and defense mechanisms in primary leaves of Phaseolus vulgaris as a result of root assimilation of toxic amounts of copper. Physiologia Plantarum, 1996, 96(3): 506-512. |
40 | Wojtaszek P. Oxidative burst: An early plant response to pathogen infection. Biochemical Journal, 1997, 322(Pt 3): 681-692. |
41 | Zhang Q, Zhao M, Meng F, et al. Effect of polystyrene microplastics on rice seed germination and antioxidant enzyme activity. Toxics, 2021, 9(8): 179. |
42 | An J, Liu H Y, Zheng Y, et al. Effects of soil microplastics residue on soybean seedlings growth and the physiological and biochemical characteristics. Journal of Sichuan Agricultural University, 2021, 39(1): 41-46. |
安菁, 刘欢语, 郑艳, 等. 土壤微塑料残留对大豆幼苗生长及生理生化特征的影响. 四川农业大学学报, 2021, 39(1): 41-46. | |
43 | Liu L, Hong T T, Hu Q N, et al. Effects of the combination of microplastics and lead pollution on growth and oxidative responses of rice seedlings’ roots. Journal of Agro-Environment Science, 2021, 40(12): 2623-2633. |
刘玲, 洪婷婷, 胡倩男, 等. 微塑料与铅复合污染对水稻幼苗根系生长和氧化应激的影响. 农业环境科学学报, 2021, 40(12): 2623-2633. |
[1] | 张振粉, 黄荣, 姚博, 张旺东, 杨成德, 陈秀蓉. 欧美进口紫花苜蓿可培养种带细菌及其对动植物的致病性[J]. 草业学报, 2023, 32(4): 161-172. |
[2] | 张士敏, 赵娇阳, 朱慧森, 卫凯, 王永新. 硒对不同品种紫花苜蓿发芽阶段物质转化和形态建成的影响[J]. 草业学报, 2023, 32(4): 79-90. |
[3] | 郑甲成, 余婕, 李凡, 黄小奕, 李杰勤, 陈海州, 王歆, 詹秋文, 徐兆师. SbER10_X1调控饲用高粱光合作用和生物产量的功能特性分析[J]. 草业学报, 2023, 32(4): 91-100. |
[4] | 王园, 王晶, 李淑霞. 紫花苜蓿MsBBX24基因的克隆及耐盐性分析[J]. 草业学报, 2023, 32(3): 107-117. |
[5] | 田政, 杨正禹, 陆忠杰, 罗奔, 张茂, 董瑞. 44个紫花苜蓿品种的酸铝适应性与耐受性评价[J]. 草业学报, 2023, 32(3): 142-151. |
[6] | 孙守江, 唐艺涵, 马馼, 李曼莉, 毛培胜. 紫花苜蓿种子吸胀期胚根线粒体AsA-GSH循环对低温胁迫的响应[J]. 草业学报, 2023, 32(3): 152-162. |
[7] | 刘选帅, 孙延亮, 安晓霞, 马春晖, 张前兵. 施磷和接种解磷菌对紫花苜蓿光合特性及生物量的影响[J]. 草业学报, 2023, 32(3): 189-199. |
[8] | 周晓瑾, 黄海霞, 张君霞, 马步东, 陆刚, 齐建伟, 张婷, 朱珠. 盐胁迫对裸果木幼苗光合特性的影响[J]. 草业学报, 2023, 32(2): 75-83. |
[9] | 王晓龙, 杨曌, 来永才, 李红, 钟鹏, 徐艳霞, 柴华, 李莎莎, 吴玥, 宋敏超, 周景明. 不同秋眠等级苜蓿根系性状对越冬的影响[J]. 草业学报, 2023, 32(1): 144-153. |
[10] | 孙延亮, 赵俊威, 刘选帅, 李生仪, 马春晖, 王旭哲, 张前兵. 施氮对苜蓿初花期光合日变化、叶片形态及干物质产量的影响[J]. 草业学报, 2022, 31(9): 63-75. |
[11] | 王星, 黄薇, 余淑艳, 李小云, 高雪芹, 伏兵哲. 宁夏地区地下滴灌水肥耦合对紫花苜蓿种子产量及构成因素的影响[J]. 草业学报, 2022, 31(9): 76-85. |
[12] | 赵建涛, 岳亚飞, 张前兵, 马春晖. 不同秋眠级紫花苜蓿品种抗寒性对新疆北疆地区覆雪厚度的响应[J]. 草业学报, 2022, 31(8): 24-34. |
[13] | 刘彩婷, 毛丽萍, 阿依谢木, 于应文, 沈禹颖. 紫花苜蓿与垂穗披碱草混播比例对其抗寒生长生理特征的影响[J]. 草业学报, 2022, 31(7): 133-143. |
[14] | 王雪萌, 何欣, 张涵, 宋瑞, 毛培胜, 贾善刚. 基于多光谱成像技术快速无损检测紫花苜蓿人工老化种子[J]. 草业学报, 2022, 31(7): 197-208. |
[15] | 李满有, 李东宁, 王斌, 李小云, 沈笑天, 曹立娟, 倪旺, 王腾飞, 兰剑. 不同苜蓿品种混播和播种量对牧草产量及品质的影响[J]. 草业学报, 2022, 31(5): 61-75. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||