草业学报 ›› 2024, Vol. 33 ›› Issue (2): 1-12.DOI: 10.11686/cyxb2023116
• 研究论文 •
收稿日期:
2023-04-11
修回日期:
2023-06-10
出版日期:
2024-02-20
发布日期:
2023-12-12
通讯作者:
蒲玉琳,袁大刚
作者简介:
690654034@qq.com基金资助:
Yuan-jun LUO(), Yu-lin PU(), Da-gang YUAN(), Ya-li LI, Hong-yu QIAN
Received:
2023-04-11
Revised:
2023-06-10
Online:
2024-02-20
Published:
2023-12-12
Contact:
Yu-lin PU,Da-gang YUAN
摘要:
探明高寒湿地不同退化程度土壤磷素组成特征及其形态演变的驱动机制对于湿地生态恢复过程中养分和碳汇的科学管理具有重要意义。以若尔盖自然保护区内相对原生沼泽(RPM)、轻度退化沼泽(LDM)、中度退化沼泽(MDM)、重度退化沼泽(HDM)为对象,采用液相31P核磁共振波谱技术、分段式结构方程模型研究了高寒湿地退化过程中土壤磷素演变特征及主要影响因素。结果表明,高寒湿地退化导致植物群落组成由湿生向中生演替,土壤有机质与氮含量降低。正磷酸盐和磷酸单酯含量随湿地退化呈先增加后降低的趋势,其中正磷酸盐在HDM中相较于RPM降低46.45%,磷酸单酯在LDM、MDM和HDM中相较于RPM分别增加27.02%、54.96%和41.74%;焦磷酸盐和磷酸二酯含量随湿地退化逐渐降低。分段式结构方程模型的拟合结果显示,植被生物量、土壤养分和微生物活性是影响湿地土壤磷素演变的主要因素,其中微生物活性是正磷酸盐、焦磷酸盐和磷酸二酯的正向影响因子,是磷酸单酯的负向影响因子,植物生物量是正磷酸盐和磷酸二酯的正向影响因子,土壤养分虽对各形态磷没有直接影响,但可通过调控微生物活性间接影响焦磷酸盐和磷酸二酯含量。综上所述,湿地退化通过改变植物群落组成、降低土壤养分含量和微生物活性,促进了土壤磷酸二酯分解;重度退化湿地土壤磷有效性因磷酸单酯矿化能力减弱、正磷酸盐含量降低而减小。
罗原骏, 蒲玉琳, 袁大刚, 李亚丽, 钱虹宇. 基于31P 核磁共振探究退化高寒湿地土壤磷素演变特征及影响因素[J]. 草业学报, 2024, 33(2): 1-12.
Yuan-jun LUO, Yu-lin PU, Da-gang YUAN, Ya-li LI, Hong-yu QIAN. Evolution of soil phosphorus forms and factors influencing their formation based on 31P nuclear magnetic resonance analyses of degraded alpine wetland[J]. Acta Prataculturae Sinica, 2024, 33(2): 1-12.
湿地特征 Marsh characteristics | 相对原生沼泽 RPM | 轻度退化沼泽 LDM | 中度退化沼泽 MDM | 重度退化沼泽 HDM |
---|---|---|---|---|
景观 Landscape | 沼泽 Marsh | 沼泽化草甸 Marsh meadow | 草甸 Meadow | 退化草甸 Degraded meadow |
地表积水 Surface ponding | 永久积水 Permanent ponding | 季节积水 Seasonal ponding | 无积水、地表常年湿润 Moist surface | 无积水 No ponding |
水域占比Water area proportion (%) | ≥60 | 15~60 | ≤15 | 0 |
优势群落 Dominant community | 湿生植物伴随中生植物 Hygrophytes accompanied with mesophytes | 湿、中生植物 Hygro-mesophytes | 中生植物 Mesophytes | 中生植物伴随沙生植物 Mesophytes accompanied with psammophytes |
湿生植物盖度Coverage of hygrophyte (%) | ≥60 | 30~60 | 10~30 | ≤10 |
外部扰动 External disturbance | 无明显扰动 No obvious disturbance | 排水、轻度放牧 Drainage and light grazing | 排水、中度放牧、鼠洞2~5个·m-2。 Drainage, moderate grazing and light rodent damage with rodent burrow 2-5 No.·m-2. | 排水、过度放牧、鼠洞≥5个·m-2。 Drainage, overgrazing and rodent burrow ≥5 No.·m-2. |
表1 沼泽湿地退化的分级标准
Table 1 Grading criteria of marsh degradation
湿地特征 Marsh characteristics | 相对原生沼泽 RPM | 轻度退化沼泽 LDM | 中度退化沼泽 MDM | 重度退化沼泽 HDM |
---|---|---|---|---|
景观 Landscape | 沼泽 Marsh | 沼泽化草甸 Marsh meadow | 草甸 Meadow | 退化草甸 Degraded meadow |
地表积水 Surface ponding | 永久积水 Permanent ponding | 季节积水 Seasonal ponding | 无积水、地表常年湿润 Moist surface | 无积水 No ponding |
水域占比Water area proportion (%) | ≥60 | 15~60 | ≤15 | 0 |
优势群落 Dominant community | 湿生植物伴随中生植物 Hygrophytes accompanied with mesophytes | 湿、中生植物 Hygro-mesophytes | 中生植物 Mesophytes | 中生植物伴随沙生植物 Mesophytes accompanied with psammophytes |
湿生植物盖度Coverage of hygrophyte (%) | ≥60 | 30~60 | 10~30 | ≤10 |
外部扰动 External disturbance | 无明显扰动 No obvious disturbance | 排水、轻度放牧 Drainage and light grazing | 排水、中度放牧、鼠洞2~5个·m-2。 Drainage, moderate grazing and light rodent damage with rodent burrow 2-5 No.·m-2. | 排水、过度放牧、鼠洞≥5个·m-2。 Drainage, overgrazing and rodent burrow ≥5 No.·m-2. |
湿地性质 Marsh properties | 相对原生沼泽 RPM | 轻度退化沼泽 LDM | 中度退化沼泽 MDM | 重度退化沼泽 HDM |
---|---|---|---|---|
沼泽湿地退化指数Marsh degradation index, MDI | 0.85±0.02a | 0.38±0.04b | 0.23±0.01c | 0.07±0.01d |
植被盖度Vegetation coverage (%) | 83.00±2.50a | 88.33±4.40a | 86.33±1.90a | 50.67±4.70b |
地上生物量Aboveground biomass (g·m-2) | 423.33±58.40a | 551.67±134.17a | 500.00±70.00a | 199.00±28.84b |
根系生物量Root biomass (g·m-2) | 1367.93±169.39a | 1158.93±53.93a | 683.17±71.31b | 521.48±126.55b |
容重Bulk density (g·cm-3) | 0.38±0.03b | 0.40±0.05b | 0.35±0.03b | 0.87±0.07a |
砂粒Sand (%) | 21.84±0.34c | 26.88±0.74a | 24.45±0.43b | 22.71±0.51c |
粉粒Silt (%) | 55.12±2.56b | 45.00±0.54c | 58.33±0.67ab | 60.64±0.26a |
黏粒Clay (%) | 23.05±2.84 a | 28.12±1.21a | 17.22±0.34b | 16.65±0.52b |
pH | 7.33±0.04a | 7.03 ± 0.28a | 6.62±0.67a | 7.25±0.14a |
有机质Organic matter, OM (g·kg-1) | 319.80±14.10a | 309.71±18.93a | 256.93±57.08ab | 158.39±88.89b |
全氮Total nitrogen, TN (g·kg-1) | 15.50±0.72a | 13.01±1.06ab | 11.43±2.34ab | 6.94±3.96b |
全磷Total phosphorus, TP (g·kg-1) | 0.81±0.18ab | 0.96±0.05ab | 1.12±0.11a | 0.75±0.16b |
碱解氮Available nitrogen, AN (mg·kg-1) | 1117.98±33.53a | 1004.03±136.98a | 936.04±197.01a | 626.76±317.84a |
有效磷Available phosphorus, AP (mg·kg-1) | 16.24±3.75b | 21.72±3.02ab | 27.87±4.08a | 15.04±5.9b |
微生物量磷Microbial biomass phosphorus, MBP (mg·kg-1) | 256.50±19.84a | 220.91±50.22a | 246.16±47.07a | 154.23±15.82b |
磷酸单酯酶Phosphomonoesterase (μmol·g-1·h-1) | 14.21±1.88ab | 12.54±2.17ab | 19.43±3.03a | 8.27±3.09b |
磷酸二酯酶Phosphodiesterase (μmol·g-1·h-1) | 12.46±1.13a | 10.61±1.48a | 13.01±3.29a | 6.13±3.62a |
植酸酶Phytase (μmol·g-1·h-1) | 6.64±1.34a | 2.31±0.77b | 2.47±0.88b | 1.24±0.47b |
表2 不同退化程度湿地植被特征及土壤性质
Table 2 Habitat condition and basic soil properties in differently degraded marshes
湿地性质 Marsh properties | 相对原生沼泽 RPM | 轻度退化沼泽 LDM | 中度退化沼泽 MDM | 重度退化沼泽 HDM |
---|---|---|---|---|
沼泽湿地退化指数Marsh degradation index, MDI | 0.85±0.02a | 0.38±0.04b | 0.23±0.01c | 0.07±0.01d |
植被盖度Vegetation coverage (%) | 83.00±2.50a | 88.33±4.40a | 86.33±1.90a | 50.67±4.70b |
地上生物量Aboveground biomass (g·m-2) | 423.33±58.40a | 551.67±134.17a | 500.00±70.00a | 199.00±28.84b |
根系生物量Root biomass (g·m-2) | 1367.93±169.39a | 1158.93±53.93a | 683.17±71.31b | 521.48±126.55b |
容重Bulk density (g·cm-3) | 0.38±0.03b | 0.40±0.05b | 0.35±0.03b | 0.87±0.07a |
砂粒Sand (%) | 21.84±0.34c | 26.88±0.74a | 24.45±0.43b | 22.71±0.51c |
粉粒Silt (%) | 55.12±2.56b | 45.00±0.54c | 58.33±0.67ab | 60.64±0.26a |
黏粒Clay (%) | 23.05±2.84 a | 28.12±1.21a | 17.22±0.34b | 16.65±0.52b |
pH | 7.33±0.04a | 7.03 ± 0.28a | 6.62±0.67a | 7.25±0.14a |
有机质Organic matter, OM (g·kg-1) | 319.80±14.10a | 309.71±18.93a | 256.93±57.08ab | 158.39±88.89b |
全氮Total nitrogen, TN (g·kg-1) | 15.50±0.72a | 13.01±1.06ab | 11.43±2.34ab | 6.94±3.96b |
全磷Total phosphorus, TP (g·kg-1) | 0.81±0.18ab | 0.96±0.05ab | 1.12±0.11a | 0.75±0.16b |
碱解氮Available nitrogen, AN (mg·kg-1) | 1117.98±33.53a | 1004.03±136.98a | 936.04±197.01a | 626.76±317.84a |
有效磷Available phosphorus, AP (mg·kg-1) | 16.24±3.75b | 21.72±3.02ab | 27.87±4.08a | 15.04±5.9b |
微生物量磷Microbial biomass phosphorus, MBP (mg·kg-1) | 256.50±19.84a | 220.91±50.22a | 246.16±47.07a | 154.23±15.82b |
磷酸单酯酶Phosphomonoesterase (μmol·g-1·h-1) | 14.21±1.88ab | 12.54±2.17ab | 19.43±3.03a | 8.27±3.09b |
磷酸二酯酶Phosphodiesterase (μmol·g-1·h-1) | 12.46±1.13a | 10.61±1.48a | 13.01±3.29a | 6.13±3.62a |
植酸酶Phytase (μmol·g-1·h-1) | 6.64±1.34a | 2.31±0.77b | 2.47±0.88b | 1.24±0.47b |
湿地类型 Marsh types | NaOH-EDTA提取无机磷 NaOH-EDTA Pi (mg·kg-1) | NaOH-EDTA提取有机磷 NaOH-EDTA Po (mg·kg-1) | NaOH-EDTA提取总磷 NaOH-EDTA Pt (mg·kg-1) | 回收率 Recovery (%) |
---|---|---|---|---|
RPM | 135.83±19.36b | 322.79±49.73a | 458.63±67.66b | 58.11±5.19a |
LDM | 169.27±12.11ab | 382.44±22.35a | 551.71±10.35ab | 57.72±3.91a |
MDM | 207.23±9.46a | 454.86±24.79a | 662.09±16.09a | 59.77±4.40a |
HDM | 67.03±11.41c | 375.86±65.08a | 442.89±75.77b | 60.40±6.18a |
表3 不同退化程度湿地土壤NaOH-EDTA提取磷含量及回收率
Table 3 Concentration and recovery of soil phosphorus in differently degraded marshes determined by NaOH-EDTA
湿地类型 Marsh types | NaOH-EDTA提取无机磷 NaOH-EDTA Pi (mg·kg-1) | NaOH-EDTA提取有机磷 NaOH-EDTA Po (mg·kg-1) | NaOH-EDTA提取总磷 NaOH-EDTA Pt (mg·kg-1) | 回收率 Recovery (%) |
---|---|---|---|---|
RPM | 135.83±19.36b | 322.79±49.73a | 458.63±67.66b | 58.11±5.19a |
LDM | 169.27±12.11ab | 382.44±22.35a | 551.71±10.35ab | 57.72±3.91a |
MDM | 207.23±9.46a | 454.86±24.79a | 662.09±16.09a | 59.77±4.40a |
HDM | 67.03±11.41c | 375.86±65.08a | 442.89±75.77b | 60.40±6.18a |
湿地类型 Marsh types | 磷酸单酯 Phosphate monoester | 磷酸二酯 Phosphate diester | |||||
---|---|---|---|---|---|---|---|
六磷酸肌醇 IHP | 磷酸糖 Sugar phosphate | 单核苷酸 Mononucleotide | 磷酸乙醇胺 Phosphorylethanolamine | 其他单酯 Other monoesters | DNA | 其他二酯 Other diesters | |
RPM | 121.17 | n.d. | 41.55 | n.d. | 187.69 | 15.33 | 55.90 |
LDM | 33.72 | n.d. | 35.58 | n.d. | 254.16 | 11.63 | 34.76 |
MDM | 23.92 | n.d. | 31.59 | n.d. | 366.95 | n.d. | 48.60 |
HDM | 49.74 | 29.96 | n.d. | 94.39 | 274.15 | n.d. | 2.35 |
表4 基于液相31P NMR波谱的不同退化程度湿地土壤有机磷化合物含量
Table 4 Concentrations of organic phosphorus compounds in differently degraded marshes determined by solution 31P NMR spectroscopy (mg·kg-1)
湿地类型 Marsh types | 磷酸单酯 Phosphate monoester | 磷酸二酯 Phosphate diester | |||||
---|---|---|---|---|---|---|---|
六磷酸肌醇 IHP | 磷酸糖 Sugar phosphate | 单核苷酸 Mononucleotide | 磷酸乙醇胺 Phosphorylethanolamine | 其他单酯 Other monoesters | DNA | 其他二酯 Other diesters | |
RPM | 121.17 | n.d. | 41.55 | n.d. | 187.69 | 15.33 | 55.90 |
LDM | 33.72 | n.d. | 35.58 | n.d. | 254.16 | 11.63 | 34.76 |
MDM | 23.92 | n.d. | 31.59 | n.d. | 366.95 | n.d. | 48.60 |
HDM | 49.74 | 29.96 | n.d. | 94.39 | 274.15 | n.d. | 2.35 |
图2 基于液相31P NMR波谱的不同退化程度湿地土壤磷形态变化特征
Fig. 2 Variations of soil phosphorus compounds in differently degraded marshes determined by solution 31P NMR spectroscopy
项目 Item | 植被生物量Vegetation biomass | 土壤养分Soil nutrient | 微生物活性Microbial activity | |
---|---|---|---|---|
PC1 | PC1 | PC1 | PC2 | |
特征根Eigenvalue | 2.154 | 2.917 | 2.104 | 1.254 |
累积方差贡献率Cumulative variance contribution (%) | 71.804 | 97.229 | 52.601 | 83.948 |
植被盖度Vegetation coverage | 0.948 | |||
地上生物量Aboveground biomass | 0.889 | |||
根系生物量Root biomass | 0.682 | |||
有机质Organic matter (OM) | 0.986 | |||
全氮Total nitrogen (TN) | 0.986 | |||
碱解氮Available nitrogen (AN) | 0.985 | |||
微生物量磷Microbial biomass phosphorus (MBP) | 0.749 | -0.159 | ||
磷酸单酯酶Phosphomonoesterase | 0.665 | 0.590 | ||
磷酸二酯酶Phosphodiesterase | 0.678 | 0.590 | ||
植酸酶Phytase | 0.830 | -0.426 |
表5 环境变量的主成分载荷
Table 5 Load of principal components based on the environmental variables
项目 Item | 植被生物量Vegetation biomass | 土壤养分Soil nutrient | 微生物活性Microbial activity | |
---|---|---|---|---|
PC1 | PC1 | PC1 | PC2 | |
特征根Eigenvalue | 2.154 | 2.917 | 2.104 | 1.254 |
累积方差贡献率Cumulative variance contribution (%) | 71.804 | 97.229 | 52.601 | 83.948 |
植被盖度Vegetation coverage | 0.948 | |||
地上生物量Aboveground biomass | 0.889 | |||
根系生物量Root biomass | 0.682 | |||
有机质Organic matter (OM) | 0.986 | |||
全氮Total nitrogen (TN) | 0.986 | |||
碱解氮Available nitrogen (AN) | 0.985 | |||
微生物量磷Microbial biomass phosphorus (MBP) | 0.749 | -0.159 | ||
磷酸单酯酶Phosphomonoesterase | 0.665 | 0.590 | ||
磷酸二酯酶Phosphodiesterase | 0.678 | 0.590 | ||
植酸酶Phytase | 0.830 | -0.426 |
图3 湿地退化条件下环境变量对土壤磷形态的影响路径箭头方向上的数字为标准化的路径系数;各条路径上的实线和虚线分别代表显著和不显著相关关系;*、**和***分别代表显著性水平P<0.05、P<0.01和P<0.001。Number in the arrow direction is the standardized path coefficient; Solid and dashed lines on each path represent significant and insignificant correlation relationships, respectively; *, ** and *** indicate significance in the level of P<0.05, P<0.01 and P<0.001.
Fig. 3 Impact path of environmental variables on soil phosphorus forms under wetland degradation
1 | Xiong Y Q, Wu P F, Zhang H Z, et al. Dynamics of soil water conservation during the degradation process of the Zoige Alpine Wetland. Acta Ecologica Sinica, 2011, 31(19): 5780-5788. |
熊远清, 吴鹏飞, 张洪芝, 等. 若尔盖湿地退化过程中土壤水源涵养功能. 生态学报, 2011, 31(19): 5780-5788. | |
2 | Malekmohammadi B, Rahimi B L. Ecological risk assessment of wetland ecosystems using Multi Criteria Decision Making and Geographic Information System. Ecological Indicators, 2014, 41: 133-144. |
3 | Pu Y L, Lang S X, Wang A B, et al. Distribution and functional groups of soil aggregate-associated organic carbon along a marsh degradation gradient on the Zoige Plateau, China. Catena, 2022, 209(2): 105811. |
4 | Cui H, Ou Y, Wang L X, et al. Distribution and release of phosphorus fractions associated with soil aggregate structure in restored wetlands. Chemosphere, 2019, 223: 319-329. |
5 | Luo L, Ye H Y, Zhang D H, et al. The dynamics of phosphorus fractions and the factors driving phosphorus cycle in Zoige Plateau peatland soil. Chemosphere, 2021, 278: 130501. |
6 | Condron L M, Turner B L, Cade-Menun B J. Chemistry and dynamics of soil organic phosphorus. Agriculture and the Environment, 2005, 46: 87-121. |
7 | Wu Y H, Prietzel J, Zhou J, et al. Soil phosphorus bioavailability assessed by XANES and Hedley sequential fractionation technique in a glacier foreland chronosequence in Gongga Mountain, Southwestern China. Science China-Earth Sciences, 2014, 57(8): 1860-1868. |
8 | Bai J H, Ye X F, Jia J, et al. Phosphorus sorption-desorption and effects of temperature, pH and salinity on phosphorus sorption in marsh soils from coastal wetlands with different flooding conditions. Chemosphere, 2017, 188(12): 677-688. |
9 | Wang H, Teng C Y, Li H Y, et al. Microbial community shifts trigger loss of orthophosphate in wetland soils subjected to experimental warming. Plant and Soil, 2018, 424(1/2): 351-365. |
10 | Wang C, Guo J S, Zhang W, et al. Drying-rewetting changes soil phosphorus status and enzymatically hydrolysable organic phosphorus fractions in the water-level fluctuation zone of Three Gorges reservoir. Catena, 2021, 204: 105416. |
11 | Wang L, Yuan J H, Wang Y, et al. Effects of exotic spartina alterniflora invasion on soil phosphorus and carbon pools and associated soil microbial community composition in coastal wetlands. ACS Omega, 2021, 6(8): 5730-5738. |
12 | Qu Y, Wang C, Guo J S, et al. Characteristics of organic phosphorus fractions in soil from water-level fluctuation zone by solution 31P-nuclear magnetic resonance and enzymatic hydrolysis. Environmental Pollution, 2019, 255(2): 113209. |
13 | Wang G P, Liu J S, Wang J D, et al. Soil phosphorus forms and their variations in depressional and riparian freshwater wetlands (Sanjiang Plain, Northeast China). Geoderma, 2006, 132(1): 59-74. |
14 | Wang G P, Zhai Z L, Liu J S, et al. Forms and profile distribution of soil phosphorus in four wetlands across gradients of sand desertification in Northeast China. Geoderma, 2008, 145(1/2): 50-59. |
15 | Qu F Z, Shao H B, Meng L, et al. Forms and vertical distributions of soil phosphorus in newly formed coastal wetlands in the Yellow River Delta estuary. Land Degradation and Development, 2018, 29(11): 4219-4226. |
16 | Hedley M J, Stewart J W B, Chauhan B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America, 1982, 46(5): 970-976. |
17 | Liu J, Yang J J. Molecular speciation of phosphorus in agricultural soils: Advances over the last 30 years. Acta Pedologica Sinica, 2021, 58(3): 558-567. |
刘瑾, 杨建军. 近三十年农田土壤磷分子形态的研究进展. 土壤学报, 2021, 58(3): 558-567. | |
18 | Luo Y J, Huang L M, Yuan D G. Research progress of the evolution trends and controls of soil organic phosphorus speciation during natural pedogenesis based on solution 31P nuclear magnetic resonance. Acta Pedologica Sinica, 2023, 60(1): 23-38. |
罗原骏, 黄来明, 袁大刚. 基于31P NMR的自然成土过程中有机磷组分演变特征及影响因素研究进展. 土壤学报, 2023, 60(1): 23-38. | |
19 | Li M, Zhang J, Wang G Q, et al. Organic phosphorus fractionation in wetland soil profiles by chemical extraction and phosphorus-31 nuclear magnetic resonance spectroscopy. Applied Geochemistry, 2016, 33: 213-221. |
20 | Zhang W Q, Jin X, Ding Y K, et al. Composition of phosphorus in wetland soils determined by SMT and solution 31P-NMR analyses. Environmental Science and Pollution Research, 2016, 23(9): 9046-9053. |
21 | Pant H K, Huang S. Characterization of phosphorus in marshland sediments by 31-phosphorus nuclear magnetic resonance spectroscopy. International Journal of Environmental Science and Technology, 2015, 12(11): 3427-3432. |
22 | Teng C Y, Shen J G, Wang Z, et al. Effect of simulated climate warming on microbial community and phosphorus forms in wetland soils. Environmental Science, 2017, 38(7): 3000-3009. |
腾昌运, 沈建国, 王忠, 等. 模拟气候升温对湿地土壤微生物群落及磷素形态的影响. 环境科学, 2017, 38(7): 3000-3009. | |
23 | Jiang W G, Lv J X, Wang C C, et al. Marsh wetland degradation risk assessment and change analysis: A case study in the Zoige Plateau, China. Ecological Indicators, 2017, 82: 316-326. |
24 | Pu Y L, Ye C, Zhang S R, et al. Response of the organic carbon fractions and stability of soil to alpine marsh degradation in Zoige, East Qinghai-Tibet Plateau. Journal of Plant Nutrition and Soil Science, 2020, 20(4): 2145-2155. |
25 | Group on Soil Taxonomy of Soil Research Institute of Chinese Academy of Sciences, Cooperative Research Group on Chinese Soil Taxonomy. Chinese soil taxonomy (3rd edtion). Hefei: University of Science and Technology of China Press, 2001. |
中国科学院南京土壤研究所土壤系统分类课题组, 中国土壤系统分类课题研究协作组. 中国土壤系统分类检索(第三版). 合肥: 中国科学技术大学出版社, 2001. | |
26 | Lu R K. Analytical methods for soil and agro-chemistry. Beijing: China Agricultural Science and Technology Press, 2000. |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. | |
27 | Tabatabai M A, Bremner J M. Use of p-nitrophenol phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry, 1969, 1: 301-307. |
28 | Browman M G, Tabatabai M A. Phosphodiesterase activity of soils. Soil Science Society of America, 1978, 42(2): 284-290. |
29 | Ye D H, Li T X, Zhang X Z, et al. Rhizosphere P composition, phosphatase and phytase activities of Polygonum hydropiper grown in excess P soils. Biology and Fertility of Soils, 2017, 53(8): 823-836. |
30 | Cade-Menun B J, Liu C W. Solution phosphorus-31 nuclear magnetic resonance spectroscopy of soils from 2005 to 2013: a review of sample preparation and experimental parameters. Soil Science Society of America, 2014, 78(1): 19-37. |
31 | Turner B L, Mahieu N, Condron L M. Phosphorus-31 nuclear magnetic resonance spectral assignments of phosphorus compounds in soil NaOH-EDTA extracts. Soil Science Society of America, 2003, 67(2): 497-510. |
32 | Cade-Menun B J. Improved peak identification in 31P-NMR spectra of environmental samples with a standardized method and peak library. Geoderma, 2015, 257: 102-114. |
33 | Touhami D, McDowell R W, Condron L M. Role of organic anions and phosphatase enzymes in phosphorus acquisition in the rhizospheres of legumes and grasses grown in a low phosphorus pasture soil. Plants, 2020, 9(9): 1185. |
34 | Gatiboni L C, Schmitt D E, Tiecher T, et al. Plant uptake of legacy phosphorus from soils without P fertilization. Nutrient Cycling in Agroecosystems, 2021, 119(1): 139-151. |
35 | Jørgensen C, Turner B L, Reitzel K. Identification of inositol hexakisphosphate binding sites in soils by selective extraction and solution 31P NMR spectroscopy. Geoderma, 2015, 257: 22-28. |
36 | Yuan H Z, Pan W, Shen J, et al. Species and environmental geochemistry characteristics of organic phosphorus in sediments of a riverine wetland measured by 31P-NMR spectroscopy. Geochemistry International, 2015, 53(12): 1141-1149. |
37 | Hupfer M, Lewandowski J. Oxygen controls the phosphorus release from lake sediments-a long-lasting paradigm in limnology. International Review of Hydrobiology, 2008, 93(4/5): 415-432. |
38 | Somavilla A, Caner L, da Silva I C B, et al. Phosphorus stock depletion and soil C∶N∶P stoichiometry under annual crop rotations and grassland management systems over 13 years. Frontiers in Soil Science, 2022, 2: 10.3389/fsoil.2022.863122. |
39 | Zhai Z, Luo M, Yang Y, et al. Trade-off between microbial carbon use efficiency and microbial phosphorus limitation under salinization in a tidal wetland. Catena, 2022, 209(2): 105809. |
40 | Ebuele V O, Santoro A, Thoss V. Phosphorus speciation by 31P NMR spectroscopy in bracken (Pteridium aquilinum (L.) Kuhn) and bluebell (Hyacinthoides non-scripta (L.) Chouard ex Rothm.) dominated semi-natural upland soil. Science of the Total Environment, 2016, 566/567: 1318-1328. |
41 | Boitt G, Black A, Wakelin S A, et al. Impacts of long-term plant biomass management on soil phosphorus under temperate grassland. Plant and Soil, 2018, 427(1/2): 163-174. |
42 | Zhou J, Wu Y H, Turner B L, et al. Transformation of soil organic phosphorus along the Hailuogou post-glacial chronosequence, southeastern edge of the Tibetan Plateau. Geoderma, 2019, 352: 414-421. |
43 | Ahlgren J, Reitzel K, Danielsson R, et al. Biogenic phosphorus in oligotrophic mountain lake sediments: differences in composition measured with NMR spectroscopy. Water Research, 2006, 40(20): 3705-3712. |
44 | Turner B L, Engelbrecht B. Soil organic phosphorus in lowland tropical rain forests. Biogeochemistry, 2011, 103(1/2/3): 297-315. |
45 | Wei K, Sun T, Tian J H, et al. Soil microbial biomass, phosphatase and their relationships with phosphorus turnover under mixed inorganic and organic nitrogen addition in a Larix gmelinii plantation. Forest Ecology and Management, 2018, 422: 313-322. |
46 | Man X L, Liu B, Li Y. Distribution characteristics of organic carbon,nitrogen and phosphorus in the soils of herbaceous peat swamps in the Xiaoxing’an mountains. Journal of Beijing Forestry University, 2010, 32(6): 48-53. |
满秀玲, 刘斌, 李奕. 小兴安岭草本泥炭沼泽土壤有机碳、氮和磷分布特征. 北京林业大学学报, 2010, 32(6): 48-53. | |
47 | Capek P, Kotas P, Manzoni S, et al. Drivers of phosphorus limitation across soil microbial communities. Functional Ecology, 2016, 30: 1705-1713. |
48 | Chi G Y, Zeng F P, Wang Y, et al. Phosphorus dynamics in litter-soil systems during litter decomposition in larch plantations across the chronosequence. Frontiers in Plant Science, 2022, 13: 1010458. |
[1] | 杨志强, 刘丹, 廖小琴, 陈丹阳, 宋小艳, 柳杨, 王长庭. 若尔盖不同退化高寒草甸土壤磷形态及其影响因素[J]. 草业学报, 2023, 32(12): 36-46. |
[2] | 钱虹宇, 蒲玉琳, 郎山鑫, 李怡燃, 周南丁. 土壤有机磷矿化特征对高寒草甸退化及温度的响应[J]. 草业学报, 2023, 32(10): 15-27. |
[3] | 张洋, 雷平, 谢德体, 倪九派. 自然粒度酸化紫色土磷形态分级及其流失解析度评价[J]. 草业学报, 2017, 26(11): 22-34. |
[4] | 韩晓飞, 高明, 谢德体, 王子芳, 陈晨. 长期定位施肥条件下紫色土无机磷形态演变研究[J]. 草业学报, 2016, 25(4): 63-72. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||