草业学报 ›› 2023, Vol. 32 ›› Issue (12): 36-46.DOI: 10.11686/cyxb2023054
杨志强(), 刘丹(), 廖小琴, 陈丹阳, 宋小艳, 柳杨, 王长庭
收稿日期:
2023-02-20
修回日期:
2023-04-10
出版日期:
2023-12-20
发布日期:
2023-10-18
通讯作者:
刘丹
作者简介:
Corresponding author. E-mail: liudan_ucas@163.com基金资助:
Zhi-qiang YANG(), Dan LIU(), Xiao-qin LIAO, Dan-yang CHEN, Xiao-yan SONG, Yang LIU, Chang-ting WANG
Received:
2023-02-20
Revised:
2023-04-10
Online:
2023-12-20
Published:
2023-10-18
Contact:
Dan LIU
摘要:
为了明确不同退化高寒草甸土壤磷含量的变化特征,以若尔盖未退化(UD)、轻度退化(LD)、中度退化(MD)、重度退化(SD)和极度退化(ED)高寒草甸为研究对象,采用Hedley磷分级法,测定并比较不同退化程度下高寒草甸土壤磷形态含量差异,探讨影响退化高寒草甸土壤磷形态的环境因素。结果显示:1)整体上高寒草甸土壤磷形态以盐酸磷为主,稀盐酸无机磷(DHCl-Pi)、浓盐酸无机磷(CHCl-Pi)和浓盐酸有机磷(CHCl-Po)含量之和占总磷(TP)的50%以上。2)高寒草甸土壤各形态磷随退化程度加剧整体呈下降趋势。与未退化草甸相比,极度退化草甸0~10 cm土壤水溶性磷(H2O-P)、碳酸氢钠无机磷(NaHCO3-Pi)和碳酸氢钠有机磷(NaHCO3-Po)显著降低了92.51%、89.57%和85.10%,10~20 cm土壤仅NaHCO3-Po显著降低了80.32%;0~20 cm土壤氢氧化钠无机磷(NaOH-Pi)、氢氧化钠有机磷(NaOH-Po)、浓盐酸有机磷(CHCl-Po)和残余磷(residual-P)整体表现为随退化加剧而降低,最小值均在极度退化草甸且分别为12.15、7.09、21.14和26.48 mg·kg-1。3)H2O-P与土壤容重(BD)显著负相关;NaHCO3-Pi、NaHCO3-Po、NaOH-Pi、NaOH-Po、CHCl-Po和residual-P与土壤总碳(TC)和总氮(TN)显著正相关而与土壤pH和BD显著负相关;CHCl-Pi与所有环境因子相关性不显著;土壤BD、pH、含水量(SMC)、TC和TN共同解释土壤磷形态变异的78.79%,其中土壤pH的贡献率最高(52.29%)。综上,土壤各磷形态均随高寒草甸退化加剧而呈现出不同程度的降低,其中土壤有机磷的下降幅度最为明显。研究结果有望为未来若尔盖退化高寒草甸土壤养分保持及草甸恢复管理提供科学依据。
杨志强, 刘丹, 廖小琴, 陈丹阳, 宋小艳, 柳杨, 王长庭. 若尔盖不同退化高寒草甸土壤磷形态及其影响因素[J]. 草业学报, 2023, 32(12): 36-46.
Zhi-qiang YANG, Dan LIU, Xiao-qin LIAO, Dan-yang CHEN, Xiao-yan SONG, Yang LIU, Chang-ting WANG. Changes in soil phosphorus fractions and their causes under alpine meadows with different degradation status in Zoigê[J]. Acta Prataculturae Sinica, 2023, 32(12): 36-46.
退化类型 Degradation type | 覆盖度 Total coverage (%) | 平均高度 Average height (cm) | 生物量 Biomass (g·m-2) | 优势种 Dominant species |
---|---|---|---|---|
未退化UD | 98.00±2.00 | 21.33±3.06 | 250.95±81.16 | 木里薹草C. muliensis、西藏嵩草C. tibetikobresia、线叶嵩草C. capillifolia |
轻度退化LD | 91.67±2.89 | 14.33±6.03 | 217.13±28.39 | 矮生嵩草C. alatauensis、线叶嵩草C. capillifolia、淡黄香青Anaphalis flavescens |
中度退化MD | 78.33±5.77 | 3.67±1.15 | 77.56±12.17 | 矮生嵩草C. alatauensis、蕨麻A. anserina、圆穗蓼Bistorta macrophylla |
重度退化SD | 31.67±12.58 | 2.33±0.58 | 31.47±16.17 | 蕨麻A. anserina、鸡冠茶S. bifurca、平车前Plantago depressa |
极度退化ED | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | - |
表1 不同退化高寒草甸地上植物群落特征
Table 1 Characteristics of aboveground plant community under different degraded alpine meadows
退化类型 Degradation type | 覆盖度 Total coverage (%) | 平均高度 Average height (cm) | 生物量 Biomass (g·m-2) | 优势种 Dominant species |
---|---|---|---|---|
未退化UD | 98.00±2.00 | 21.33±3.06 | 250.95±81.16 | 木里薹草C. muliensis、西藏嵩草C. tibetikobresia、线叶嵩草C. capillifolia |
轻度退化LD | 91.67±2.89 | 14.33±6.03 | 217.13±28.39 | 矮生嵩草C. alatauensis、线叶嵩草C. capillifolia、淡黄香青Anaphalis flavescens |
中度退化MD | 78.33±5.77 | 3.67±1.15 | 77.56±12.17 | 矮生嵩草C. alatauensis、蕨麻A. anserina、圆穗蓼Bistorta macrophylla |
重度退化SD | 31.67±12.58 | 2.33±0.58 | 31.47±16.17 | 蕨麻A. anserina、鸡冠茶S. bifurca、平车前Plantago depressa |
极度退化ED | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | - |
土层 Soil layer (cm) | 退化类型 Degradation type | 含水量 Soil moisture content (%) | pH | 容重 Bulk density (g·cm-3) | 总碳 Total carbon (%) | 总氮 Total nitrogen (%) | 总磷 Total phosphorus (mg·kg-1) |
---|---|---|---|---|---|---|---|
0~10 | 未退化UD | 3.00±0.16c | 6.65±0.01a | 0.43±0.01a | 26.30±3.97b | 1.92±0.03b | 1180.39±29.04d |
轻度退化LD | 1.66±0.02b | 6.82±0.06ab | 0.68±0.01ab | 20.86±18.15b | 1.45±0.10b | 895.88±1.84c | |
中度退化MD | 0.70±0.01a | 7.24±0.03bc | 1.10±0.01bc | 7.15±1.56a | 0.52±0.01a | 772.08±16.45b | |
重度退化SD | 0.34±0.01a | 7.48±0.01c | 2.10±0.05c | 5.23±0.62a | 0.39±0.01a | 712.85±3.33b | |
极度退化ED | 0.13±0.00a | 8.72±0.01d | 2.61±0.03d | 1.87±0.08a | 0.13±0.01a | 287.07±7.61a | |
10~20 | 未退化UD | 3.06±0.47c | 6.63±0.01a | 0.49±0.01a | 18.90±1.74b | 1.34±0.02b | 939.94±31.53c |
轻度退化LD | 1.26±0.01b | 6.78±0.02a | 0.94±0.00b | 15.56±7.03b | 1.03±0.28b | 549.50±18.88b | |
中度退化MD | 0.34±0.01ab | 6.96±0.03a | 1.86±0.02c | 3.56±0.64a | 0.27±0.00a | 580.01±21.14b | |
重度退化SD | 0.32±0.01ab | 7.35±0.01b | 2.15±0.02c | 4.30±0.45a | 0.32±0.00a | 636.80±0.93b | |
极度退化ED | 0.18±0.01a | 8.54±0.01c | 2.62±0.01d | 1.47±0.18a | 0.10±0.00a | 286.49±4.32a |
表2 不同退化高寒草甸土壤理化性质变化
Table 2 Variations of soil physiochemical properties under different degraded alpine meadows
土层 Soil layer (cm) | 退化类型 Degradation type | 含水量 Soil moisture content (%) | pH | 容重 Bulk density (g·cm-3) | 总碳 Total carbon (%) | 总氮 Total nitrogen (%) | 总磷 Total phosphorus (mg·kg-1) |
---|---|---|---|---|---|---|---|
0~10 | 未退化UD | 3.00±0.16c | 6.65±0.01a | 0.43±0.01a | 26.30±3.97b | 1.92±0.03b | 1180.39±29.04d |
轻度退化LD | 1.66±0.02b | 6.82±0.06ab | 0.68±0.01ab | 20.86±18.15b | 1.45±0.10b | 895.88±1.84c | |
中度退化MD | 0.70±0.01a | 7.24±0.03bc | 1.10±0.01bc | 7.15±1.56a | 0.52±0.01a | 772.08±16.45b | |
重度退化SD | 0.34±0.01a | 7.48±0.01c | 2.10±0.05c | 5.23±0.62a | 0.39±0.01a | 712.85±3.33b | |
极度退化ED | 0.13±0.00a | 8.72±0.01d | 2.61±0.03d | 1.87±0.08a | 0.13±0.01a | 287.07±7.61a | |
10~20 | 未退化UD | 3.06±0.47c | 6.63±0.01a | 0.49±0.01a | 18.90±1.74b | 1.34±0.02b | 939.94±31.53c |
轻度退化LD | 1.26±0.01b | 6.78±0.02a | 0.94±0.00b | 15.56±7.03b | 1.03±0.28b | 549.50±18.88b | |
中度退化MD | 0.34±0.01ab | 6.96±0.03a | 1.86±0.02c | 3.56±0.64a | 0.27±0.00a | 580.01±21.14b | |
重度退化SD | 0.32±0.01ab | 7.35±0.01b | 2.15±0.02c | 4.30±0.45a | 0.32±0.00a | 636.80±0.93b | |
极度退化ED | 0.18±0.01a | 8.54±0.01c | 2.62±0.01d | 1.47±0.18a | 0.10±0.00a | 286.49±4.32a |
图1 退化高寒草甸土壤磷形态相对含量UD:未退化Undegradation; LD:轻度退化Light degradation; MD:中度退化Moderate degradation; SD:重度退化Severe degradation; ED:极度退化Extreme degradation. 下同The same below.
Fig.1 Percent of P fractions to TP under different degraded alpine meadows
图2 退化高寒草甸土壤活性磷特征不同字母表示同一土层不同退化梯度间差异显著(P<0.05)。下同。Different letters mean significant differences among degradation types in same soil layer (P<0.05). The same below.
Fig.2 Soil labile P under different degraded alpine meadows
磷形态P fraction | 含水量Soil moisture content | 容重Bulk density | pH | 总碳Total carbon | 总氮Total nitrogen |
---|---|---|---|---|---|
水溶性磷H2O-P | 0.26 | -0.42* | -0.26 | 0.30 | 0.32 |
碳酸氢钠无机磷NaHCO3-Pi | 0.33 | -0.52** | -0.39* | 0.45* | 0.47** |
碳酸氢钠有机磷NaHCO3-Po | 0.59** | -0.79** | -0.78** | 0.73** | 0.74** |
氢氧化钠无机磷NaOH-Pi | 0.65** | -0.74** | -0.65** | 0.76** | 0.77** |
氢氧化钠有机磷NaOH-Po | 0.45* | -0.50** | -0.77** | 0.40* | 0.41* |
稀盐酸无机磷DHCl-Pi | 0.60** | -0.24 | 0.03 | 0.37* | 0.40* |
浓盐酸无机磷CHCl-Pi | 0.11 | 0.14 | 0.28 | -0.09 | -0.06 |
浓盐酸有机磷CHCl-Po | 0.76** | -0.89** | -0.82** | 0.85** | 0.85** |
残余磷Residual-P | 0.77** | -0.80** | -0.76** | 0.86** | 0.85** |
表3 不同形态磷与土壤理化性质的Pearson相关性
Table 3 Pearson correlations between P fractions and soil physiochemical properties
磷形态P fraction | 含水量Soil moisture content | 容重Bulk density | pH | 总碳Total carbon | 总氮Total nitrogen |
---|---|---|---|---|---|
水溶性磷H2O-P | 0.26 | -0.42* | -0.26 | 0.30 | 0.32 |
碳酸氢钠无机磷NaHCO3-Pi | 0.33 | -0.52** | -0.39* | 0.45* | 0.47** |
碳酸氢钠有机磷NaHCO3-Po | 0.59** | -0.79** | -0.78** | 0.73** | 0.74** |
氢氧化钠无机磷NaOH-Pi | 0.65** | -0.74** | -0.65** | 0.76** | 0.77** |
氢氧化钠有机磷NaOH-Po | 0.45* | -0.50** | -0.77** | 0.40* | 0.41* |
稀盐酸无机磷DHCl-Pi | 0.60** | -0.24 | 0.03 | 0.37* | 0.40* |
浓盐酸无机磷CHCl-Pi | 0.11 | 0.14 | 0.28 | -0.09 | -0.06 |
浓盐酸有机磷CHCl-Po | 0.76** | -0.89** | -0.82** | 0.85** | 0.85** |
残余磷Residual-P | 0.77** | -0.80** | -0.76** | 0.86** | 0.85** |
1 | Tian J, Boitt G, Black A, et al. Accumulation and distribution of phosphorus in the soil profile under fertilized grazed pasture. Agriculture, Ecosystems & Environment, 2017, 239: 228-235. |
2 | Kruse J, Abraham M, Amelung W, et al. Innovative methods in soil phosphorus research: A review. Journal of Plant Nutrition and Soil Science, 2015, 178(1): 43-88. |
3 | He Y Q, Zhu Y G, Smith S E, et al. Interactions between soil moisture content and phosphorus supply in spring wheat plants grown in pot culture. Journal of Plant Nutrition, 2002, 25(4): 913-925. |
4 | Qu F Z, Yu J B, Chen X B, et al. A review on soil phosphorus fractionation scheme on wetlands. Chinese Journal of Soil Science, 2012, 43(1): 243-248. |
屈凡柱, 于君宝, 陈小兵, 等. 湿地土壤磷分级方法研究. 土壤通报, 2012, 43(1): 243-248. | |
5 | Lei W Q, Hu Y F, Yang Z P, et al. Effects of reclamation on the soil phosphorus fractions of alpine meadow in northwest Sichuan. Acta Prataculturae Sinica, 2019, 28(5): 36-45. |
雷玮倩, 胡玉福, 杨泽鹏, 等. 垦殖对川西北高寒草地土壤中不同磷组分含量的影响. 草业学报, 2019, 28(5): 36-45. | |
6 | Scott J T, Condron L M. Dynamics and availability of phosphorus in the rhizosphere of a temperate silvopastoral system. Biology and Fertility of Soils, 2003, 39(2): 65-73. |
7 | Wang J L, Zhong Z M, Wang Z H, et al. Distribution characteristics of soil C/P ratio in alpine steppe ecosystem of Qinghai-Tibet Plateau. Acta Prataculturae Sinica, 2014, 23(2): 9-19. |
王建林, 钟志明, 王忠红, 等. 青藏高原高寒草原生态系统土壤碳磷比的分布特征. 草业学报, 2014, 23(2): 9-19. | |
8 | Wang D, Lv Y L, Xu L, et al. The effect of moisture and temperature on soil C mineralization in wetland and steppe of Zoigê region, China. Acta Ecologica Sinica, 2013, 33(20): 6436-6443. |
王丹, 吕瑜良, 徐丽, 等. 水分和温度对若尔盖湿地和草甸土壤碳矿化的影响. 生态学报, 2013, 33(20): 6436-6443. | |
9 | Luo Y J. Evolution characteristics of soil phosphorus form and availability during alpine wetland degradation. Chengdu: Sichuan Agricultural University, 2020. |
罗原骏. 高寒湿地退化过程中土壤磷形态及其有效性演变特征. 成都: 四川农业大学, 2020. | |
10 | Shao D. Characteristics of soil phosphorus fractions in differently degraded wetlands in Zoigê. Chengdu: Sichuan Agricultural University, 2017. |
邵丹. 若尔盖退化沼泽湿地的土壤磷素组分变化特征研究. 成都: 四川农业大学, 2017. | |
11 | Xu C, Zhang L B, Du J Q, et al. Impact of alpine meadow degradation on soil water conservation in the source region of three rivers. Acta Ecologica Sinica, 2013, 33(8): 2388-2399. |
徐翠, 张林波, 杜加强, 等. 三江源区高寒草甸退化对土壤水源涵养功能的影响. 生态学报, 2013, 33(8): 2388-2399. | |
12 | Li R, Qian L, Sun H. Current progress and future prospects in phylofloristics. Plant Diversity, 2018, 40(4): 141-146. |
13 | Han D Y, Yang Y X. Species composition and associated driven factors of plant community in the desertified swamp area of Zoigê plateau. Acta Ecologica Sinica, 2020, 40(16): 5602-5610. |
韩大勇, 杨永兴. 若尔盖高原沙化沼泽区植物群落物种组成及其驱动因素. 生态学报, 2020, 40(16): 5602-5610. | |
14 | Zhao K Y, He C Q. The influence of human activities on Zoigê Marsh and its countermeasures. Scientia Geographica Sinica, 2000, 20(5): 444-449. |
赵魁义, 何池全. 人类活动对若尔盖高原沼泽的影响与对策. 地理科学, 2000, 20(5): 444-449. | |
15 | Liu X M, Luo J F, Chen D C, et al. Floristic assembly and dominant population niches in degraded grasslands on the Zoigê Plateau. Journal of Zhejiang A & F University, 2019, 36(2): 289-297. |
刘学敏, 罗久富, 陈德朝, 等. 若尔盖高原不同退化程度草地植物种群生态位特征. 浙江农林大学学报, 2019, 36(2): 289-297. | |
16 | Song X Y, Wang C T, Hu L, et al. Changes in soil aggregate-associated organic carbon of degraded alpine meadow in the Zoigê Plateau. Acta Ecologica Sinica, 2022, 42(4): 1538-1548. |
宋小艳, 王长庭, 胡雷, 等. 若尔盖退化高寒草甸土壤团聚体结合有机碳的变化. 生态学报, 2022, 42(4): 1538-1548. | |
17 | Jin X, Qiang H, Zhao L, et al. SPEI-based analysis of spatio-temporal variation characteristics for annual and seasonal drought in the Zoigê Wetland, Southwest China from 1961 to 2016. Theoretical and Applied Climatology, 2020, 139(1/2): 711-725. |
18 | Li C X, Sun H S. Kobresia tibetica of resources and protection of marshy meadow in Qinghai Province. Pratacultural Science, 2009, 26(9): 77-83. |
李春秀, 孙海松. 青海省西藏嵩草沼泽化草甸资源及保护. 草业科学, 2009, 26(9): 77-83. | |
19 | Qimanguli P L T, Liu D, Mao J, et al. Soil carbon, nitrogen, phosphorus and their eco-stoichiometric characteristics of alpine grasslands under different degradation degrees. Chinese Journal of Ecology, 2023, 2(10): 1-11. |
其曼古丽·帕拉提, 刘丹, 毛军, 等. 不同退化程度高寒草地土壤碳氮磷含量及其生态化学计量特征. 生态学杂志, 2023, 2(10): 1-11. | |
20 | Zhang W, Fu Y, Li J F, et al. Comparative study on kjeldahl method and dumas combustion method for total nitrogen measurement in soil. Chinese Agricultural Science Bulletin, 2015, 31(35): 172-175. |
张薇, 付昀, 李季芳, 等. 基于凯氏定氮法与杜马斯燃烧法测定土壤全氮的比较研究. 中国农学通报, 2015, 31(35): 172-175. | |
21 | Hedley M J, Stewart J W B, Chauhan B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal, 1982, 46(5): 970-976. |
22 | Murphy J, Riley J P. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 1962, 27: 31-36. |
23 | Cao Z N, Kühn P, He J S, et al. Calibration of near-infrared spectra for phosphorus fractions in grassland soils on the Tibetan Plateau. Agronomy, 2022, 12(4): 783. |
24 | Carrera A L, Bertiller M B, Larreguy C. Leaf litterfall, fine-root production, and decomposition in shrublands with different canopy structure induced by grazing in the Patagonian Monte, Argentina. Plant and Soil, 2008, 311(1/2): 39-50. |
25 | Sanches S L E A, José R D, Torres F P, et al. Prevention of additional compaction in eucalyptus and pasture land uses, considering soil moisture and bulk density. Journal of South American Earth Sciences, 2022, 120: 104113. |
26 | Zhou H K, Zhao X Q, Zhou L, et al. Characteristics of vegetation degradation and soil degradation in alpine meadow of Qinghai-Tibet Plateau. Acta Prataculturae Sinica, 2005, 14(3): 31-40. |
周华坤, 赵新全, 周立, 等. 青藏高原高寒草甸的植被退化与土壤退化特征研究. 草业学报, 2005, 14(3): 31-40. | |
27 | Wei J J, Qin R M, Zhang Z H, et al. Characteristic and interrelationship of plant community and soil properties in different degraded alpine grassland. Acta Agrestia Sinica, 2022, 30(11): 3035-3045. |
魏晶晶, 秦瑞敏, 张中华, 等. 不同退化程度高寒草地植物群落与土壤性质变化及相关性分析. 草地学报, 2022, 30(11): 3035-3045. | |
28 | Liu X S, Zhang Z Y, Wei J P. Influencing factors and intensity changes of soil pH value in south Jiangxi Province. Bulletin of Soil and Water Conservation, 2021, 41(4): 100-105. |
刘雪松, 张智印, 魏建朋. 赣南地区土壤pH值分布的影响因素及其强度变化. 水土保持通报, 2021, 41(4): 100-105. | |
29 | Li X P, Xu S Y, Li M Q, et al. Evolution regularity of degraded alpine meadow vegetation and soil characteristics at different degree in Gannan Tibetan Autonomous Prefecture. Acta Ecologica Sinica, 2022, 42(18): 7541-7552. |
李雪萍, 许世洋, 李敏权, 等. 甘南州不同退化程度高寒草甸植被及土壤特性的演化规律. 生态学报, 2022, 42(18): 7541-7552. | |
30 | Wang C T, Long R J, Wang Q L, et al. Changes in soil organic carbon and microbial biomass carbon at different degradation successional stages of alpine meadow in the Headwater Region of Three Rivers in China. Chinese Journal of Applied and Environmental Biology, 2008, 14(2): 225-230. |
王长庭, 龙瑞军, 王启兰, 等. 三江源区高寒草甸不同退化演替阶段土壤有机碳和微生物量碳的变化. 应用与环境生物学报, 2008, 14(2): 225-230. | |
31 | Cui C Y. Transformation and coupling mechanism of phosphorus and iron during wet-dry rotation in acidic soils in Southern China. Wuhan: Huazhong Agricultural University, 2021. |
崔宸阳. 干湿交替环境南方酸性土壤磷、铁形态转化及其耦合机理. 武汉: 华中农业大学, 2021. | |
32 | Holford I C R. Soil phosphorus: Its measurement, and its uptake by plants. Australian Journal of Soil Research, 1997, 35: 227-240. |
33 | Wang Z, Li F, Liu L, et al. Changes in soil phosphorus fractions under different land uses in desert grasslands in Northwest China. European Journal of Soil Science, 2022, 73(3): 13255. |
34 | Wu Z, Peng Y F, Yang G B, et al. Effects of land degradation on soil and microbial stoichiometry in Qingzang Plateau alpine grasslands. Chinese Journal of Plant Ecology, 2022, 46(4): 461-472. |
吴赞, 彭云峰, 杨贵彪, 等. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响. 植物生态学报, 2022, 46(4): 461-472. | |
35 | Peng Y, Sun J Y, Ma S J, et al. Plant community composition and soil nutrient status of degraded alpine meadow sites in Northern Tibet. Acta Prataculturae Sinica, 2022, 31(8): 49-60. |
彭艳, 孙晶远, 马素洁, 等. 藏北不同退化阶段高寒草甸植物群落特征与土壤养分特性. 草业学报, 2022, 31(8): 49-60. | |
36 | Chavarro-Bermeo J P, Arruda B, Mora-Motta D A, et al. Responses of soil phosphorus fractions to land-use change in Colombian Amazon. Sustainability, 2022, 14(4): 2285. |
37 | Shi J, Zhang Y F, Zhang N M, et al. Effects of long-term fertilization on forms and availability of phosphorus in mountain red soil. Acta Pedologica Sinica, 2014, 51(2): 351-359. |
史静, 张誉方, 张乃明, 等. 长期施磷对山原红壤磷库组成及有效性的影响. 土壤学报, 2014, 51(2): 351-359. | |
38 | Yang X Y, Chen X W. Vertical distribution characteristics of phosphorus fractions in uncultivated disturbed black soil. Chinese Journal of Soil Science, 2016, 47(2): 378-383. |
杨小燕, 陈祥伟. 未开垦干扰黑土土壤磷素形态垂直分布特征. 土壤通报, 2016, 47(2): 378-383. | |
39 | Zhang X, Gu H Y, Chen X W. Effects of selective cutting on soil phosphorus forms and availability in Korean pine broad-leaved forest in Xiaoxing’an Mountains of China. Chinese Journal of Applied Ecology, 2018, 29(2): 441-448. |
张鑫, 谷会岩, 陈祥伟. 择伐干扰对小兴安岭阔叶红松林土壤磷形态及有效性的影响. 应用生态学报, 2018, 29(2): 441-448. | |
40 | Yin A J. Changes in soil physico-chemical characteristic and phosphorus species in typical reclaimed tidal area in Eastern China. Nanjing: Nanjing University, 2015. |
尹爱经. 典型滩涂围垦区土壤理化性质和磷形态演变. 南京: 南京大学, 2015. | |
41 | Han B, Gen Y Y, Deng Y F, et al. Effects of nitrogen addition on soil phosphorus fractions in an alpine meadow of Qinghai-Tibet Plateau. Acta Agrestia Sinica, 2022, 30(10): 2721-2728. |
韩冰, 耿依仪, 邓艳芳, 等. 氮添加对青藏高原高寒草甸土壤磷组分的影响. 草地学报, 2022, 30(10): 2721-2728. | |
42 | Mu X H, Li S Q, Dang R J. Distribution of phosphorus fractionations in calcareous soil of Loess Plateau. Chinese Journal of Eco-Agriculture, 2008(6): 1341-1347. |
穆晓慧, 李世清, 党蕊娟. 黄土高原石灰性土壤不同形态磷组分分布特征. 中国生态农业学报, 2008(6): 1341-1347. | |
43 | Li F R, Liu L L, Liu J L, et al. Abiotic and biotic controls on dynamics of labile phosphorus fractions in calcareous soils under agricultural cultivation. Science of the Total Environment, 2019, 681: 163-174. |
44 | Bai J K, Chen R, Men X X, et al. Divergent linkages of soil phosphorus fractions to edaphic properties following afforestation in the riparian zone of the upper Yangtze river, China. Chemosphere, 2023, 313: 137452. |
45 | Lin Q Y, Zeng Q X, Yuan X C, et al. Effects of nitrogen addition on the soil phosphorus fractions in subtropical Pinus taiwanensis forests. Forest Research, 2022, 35(4): 170-178. |
林巧玉, 曾泉鑫, 元晓春, 等. 氮添加对亚热带黄山松林土壤磷组分的影响. 林业科学研究, 2022, 35(4): 170-178. | |
46 | Wang Y X, Zhang H F, Li Q, et al. Effect of nitrogen addition on soil phosphorus fractions in the Phyllostachys edulis plantation. Journal of Zhejiang A & F University, 2022, 39(4): 695-704. |
王艺雄, 张华锋, 李全, 等. 氮添加对毛竹林土壤磷组分的影响. 浙江农林大学学报, 2022, 39(4): 695-704. | |
47 | Liu X F. Composition characteristic of organic matter in sediments of Taihu lake and its effect on phosphorus adsorption. Zhengzhou: Henan University, 2017. |
刘雪芳. 太湖沉积物有机质组成特征及其对磷吸附的影响. 郑州: 河南大学, 2017. | |
48 | Liu D, You G H, Song X Y, et al. Effects of phosphorus fertilization on soil phosphorus fractions and availability in an alpine grassland of northwest Sichuan. Acta Ecologica Sinica, 2023, 43(6): 1-10. |
刘丹, 游郭虹, 宋小艳, 等. 施磷对川西北高寒草地土壤磷形态及有效性的影响. 生态学报, 2023, 43(6): 1-10. |
[1] | 郁国梁, 马紫荆, 吕自立, 刘彬. 海拔和植物群落共同调节天山中段南坡巴伦台地区天然草场土壤化学计量特征[J]. 草业学报, 2023, 32(9): 68-78. |
[2] | 张东, 侯晨, 马文明, 王长庭, 邓增卓玛, 张婷. 高寒草地不同灌丛化梯度下土壤酶活性研究[J]. 草业学报, 2023, 32(9): 79-92. |
[3] | 刘继亮, 赵文智, 王永珍, 冯怡琳, 祁进贤, 李永元. 禁牧和放牧对祁连山高寒草原秋季大型和中型土壤节肢动物多样性的影响[J]. 草业学报, 2023, 32(8): 214-221. |
[4] | 李林芝, 张德罡, 马源, 罗珠珠, 林栋, 海龙, 白兰鸽. 不同退化程度高寒草甸土壤团聚体养分及生态化学计量特征研究[J]. 草业学报, 2023, 32(8): 48-60. |
[5] | 宋达成, 吴昊, 王理德, 王飞, 张裕凯, 赵学成. 双龙沟废弃矿区不同造林年限人工沙棘林土壤重金属分布特征及其对酶活性的影响[J]. 草业学报, 2023, 32(8): 61-70. |
[6] | 魏艳, 刘有斌, 刘枭宏, 谌芸, 颜哲豪, 都艺芝. 紫色土区拉巴豆和紫花苜蓿根-土复合体抗剪性能研究[J]. 草业学报, 2023, 32(8): 82-90. |
[7] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸物种多样性与系统发育多样性沿海拔梯度分布格局及驱动因子[J]. 草业学报, 2023, 32(7): 12-22. |
[8] | 杨瑞杰, 何淑勤, 周树峰, 杨晶月, 金钰宪, 郑子成. 杂交粱草生长期土壤抗冲性变化特征及其根系调控效应[J]. 草业学报, 2023, 32(7): 149-159. |
[9] | 路欣, 祁娟, 师尚礼, 车美美, 李霞, 独双双, 赛宁刚, 贾燕伟. 阔叶类草抑制剂与氮素配施对高寒草甸土壤特性的影响[J]. 草业学报, 2023, 32(7): 38-48. |
[10] | 马嵩科, 霍克, 张冬霞, 张静, 张俊豪, 柴雪茹, 王贺正. 玉米秸秆还田配施氮肥对豫西旱地小麦土壤酶活性和氮肥利用效率的影响[J]. 草业学报, 2023, 32(6): 120-133. |
[11] | 刘彩凤, 段媛媛, 王玲玲, 王乙茉, 郭正刚. 高原鼠兔干扰对高寒草甸植物物种多样性与土壤生态化学计量比间关系的影响[J]. 草业学报, 2023, 32(6): 157-166. |
[12] | 孙玉, 杨永胜, 何琦, 王军邦, 张秀娟, 李慧婷, 徐兴良, 周华坤, 张宇恒. 三江源高寒草甸水源涵养功能及土壤理化性质对退化程度的响应[J]. 草业学报, 2023, 32(6): 16-29. |
[13] | 陈彦硕, 马彦平, 王红梅, 赵亚楠, 李志丽, 张振杰. 荒漠草原不同年限灌丛引入过程土壤细菌碳源利用特征[J]. 草业学报, 2023, 32(6): 30-44. |
[14] | 刘欢, 董凯, 仁增旺堆, 王敬龙, 刘云飞, 赵桂琴. 藏沙蒿与多年生禾草混播对西藏沙化草地植被及土壤真菌群落特征的影响[J]. 草业学报, 2023, 32(6): 45-57. |
[15] | 李思媛, 崔雨萱, 孙宗玖, 刘慧霞, 冶华薇. 封育对蒿类荒漠草地土壤有机碳及土壤微生物生物量生态化学计量特征的影响[J]. 草业学报, 2023, 32(6): 58-70. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||