草业学报 ›› 2024, Vol. 33 ›› Issue (3): 120-138.DOI: 10.11686/cyxb2023187
• 研究论文 • 上一篇
岳海旺(), 魏建伟(), 王广才, 刘朋程, 陈淑萍, 卜俊周()
收稿日期:
2023-06-08
修回日期:
2023-07-05
出版日期:
2024-03-20
发布日期:
2023-12-27
通讯作者:
卜俊周
作者简介:
E-mail: bujunzhou@126.com基金资助:
Hai-wang YUE(), Jian-wei WEI(), Guang-cai WANG, Peng-cheng LIU, Shu-ping CHEN, Jun-zhou BU()
Received:
2023-06-08
Revised:
2023-07-05
Online:
2024-03-20
Published:
2023-12-27
Contact:
Jun-zhou BU
摘要:
气候因子对农作物区域试验丰产性和适应性的影响较大。为准确评价青贮玉米品种在黄淮海夏播区的适应性、丰产性和稳定性,采用2002-2021年20 a的气象数据资料,依据环境型鉴定技术(ET)对2022年青贮玉米区域试验中12个试点进行生态区(ME)划分,依据品种-性状(GT)双标图和品种-产量×性状(GYT)双标图对15个参试品种的生物干重、干物质含量、倒伏率、倒折率、空秆率、小斑病、弯孢叶斑病、南方锈病、茎腐病、瘤黑粉病、生育期、株高和穗位高13个农艺性状以及全株淀粉含量、中性洗涤纤维含量、酸性洗涤纤维含量和粗蛋白质含量4个品质指标进行综合评价。结果表明,加性主效应和积性互作效应(AMMI)方差分析被测的13个农艺性状中基因型效应和环境效应均达到了极显著水平(P<0.01),除穗位高外其余性状基因型与环境互作效应也达到了极显著水平。6个省份的12个试点被划分为4个生态区,不同生态区间气象因子呈较大的变化趋势。生物干重与株高、穗位高呈极显著正相关,而与倒伏率、倒折率呈极显著负相关。GYT双标图与生态区结合,可以鉴别出不同生态区的优势品种。参试品种中渝单805在划定的4个生态区中均表现出丰产性突出、稳定性较好的特征,属于丰产稳产型品种。皖农科青贮8号、成单3601、正大511和衡玉1996等品种在ME2、ME3和ME4中丰产性和稳定性较好。安科青2号和KNX2202等品种在ME1和ME4中丰产性较差,金诚6在ME2和ME3中丰产性和稳定性均较差。基于环境型鉴定技术划分生态区和GYT双标图相结合评价青贮玉米品种的丰产性、稳定性和适应性,可以实现品种推广的精细定位。
岳海旺, 魏建伟, 王广才, 刘朋程, 陈淑萍, 卜俊周. 基于环境型鉴定技术划分生态区综合评价黄淮海青贮玉米品种[J]. 草业学报, 2024, 33(3): 120-138.
Hai-wang YUE, Jian-wei WEI, Guang-cai WANG, Peng-cheng LIU, Shu-ping CHEN, Jun-zhou BU. Comprehensive evaluation of silage maize hybrids in the Huanghuaihai plain based on mega-environments delineated using envirotyping techniques[J]. Acta Prataculturae Sinica, 2024, 33(3): 120-138.
品种名称 Hybrid name | 品种缩写Hybrid abbreviation | 供种单位 Institution of seed supply |
---|---|---|
成单3601 Chengdan3601 | CD3601 | 四川省农业科学院作物研究所Crop Research Institute, Sichuan Academy of Agricultural Sciences |
皖农科青贮8号 Wannongkeqingzhu8 | WNKQZ8 | 安徽省农业科学院烟草研究所Institute of Tobacco Research, Anhui Academy of Agricultural Sciences |
渝单805 Yudan805 | YD805 | 重庆市农业科学院Chongqing Academy of Agricultural Sciences |
雅玉7758 Yayu7758 | YY7758 | 四川雅玉科技股份有限公司Sichuan Yayu Technology Co., Ltd. |
SN8872 | SN8872 | 山东农业大学Shandong Agricultural University |
青秀001 Qingxiu001 | QX001 | 绵阳市农业科学研究院Mianyang Institute of Agricultural Science |
正大511 Zhengda511 | ZD511 | 襄阳正大农业开发有限公司Xiangyang Zhengda Agricultural Development Co., Ltd. |
郑青贮7号 Zhengqingzhu7 | ZQZ7 | 河南省农业科学院粮食作物研究所Institute of Grain Crops, Henan Provincial Academy of Agricultural Sciences |
泓丰159 Hongfeng159 | HF159 | 北京新实泓丰种业有限公司Beijing Xinshi Hongfeng Seed Co., Ltd. |
连青贮303 Lianqingzhu303 | LQZ303 | 连云港市农业科学院Lianyungang Academy of Agricultural Sciences |
安科青2号 Ankeqing2 | AKQ2 | 安徽科技学院Anhui Science and Technology University |
金诚6 Jincheng6 | JC6 | 河南金苑种业股份有限公司Henan Jinyuan Seed Co., Ltd. |
衡玉1996 Hengyu1996 | HY1996 | 河北省农林科学院旱作农业研究所Dryland Farming Institute, Hebei Academy of Agriculture and Forestry Sciences |
KNX22002 | KNX22002 | 湖北省康农生物育种研究院Hubei Kangnong Biological Breeding Research Institute |
雅玉青贮8号Yayuqingzhu8 | YYQZ8 | 四川雅玉科技股份有限公司Sichuan Yayu Technology Co., Ltd. |
表1 参试品种名称、品种缩写及供种单位
Table 1 Description of the hybrids used in this study
品种名称 Hybrid name | 品种缩写Hybrid abbreviation | 供种单位 Institution of seed supply |
---|---|---|
成单3601 Chengdan3601 | CD3601 | 四川省农业科学院作物研究所Crop Research Institute, Sichuan Academy of Agricultural Sciences |
皖农科青贮8号 Wannongkeqingzhu8 | WNKQZ8 | 安徽省农业科学院烟草研究所Institute of Tobacco Research, Anhui Academy of Agricultural Sciences |
渝单805 Yudan805 | YD805 | 重庆市农业科学院Chongqing Academy of Agricultural Sciences |
雅玉7758 Yayu7758 | YY7758 | 四川雅玉科技股份有限公司Sichuan Yayu Technology Co., Ltd. |
SN8872 | SN8872 | 山东农业大学Shandong Agricultural University |
青秀001 Qingxiu001 | QX001 | 绵阳市农业科学研究院Mianyang Institute of Agricultural Science |
正大511 Zhengda511 | ZD511 | 襄阳正大农业开发有限公司Xiangyang Zhengda Agricultural Development Co., Ltd. |
郑青贮7号 Zhengqingzhu7 | ZQZ7 | 河南省农业科学院粮食作物研究所Institute of Grain Crops, Henan Provincial Academy of Agricultural Sciences |
泓丰159 Hongfeng159 | HF159 | 北京新实泓丰种业有限公司Beijing Xinshi Hongfeng Seed Co., Ltd. |
连青贮303 Lianqingzhu303 | LQZ303 | 连云港市农业科学院Lianyungang Academy of Agricultural Sciences |
安科青2号 Ankeqing2 | AKQ2 | 安徽科技学院Anhui Science and Technology University |
金诚6 Jincheng6 | JC6 | 河南金苑种业股份有限公司Henan Jinyuan Seed Co., Ltd. |
衡玉1996 Hengyu1996 | HY1996 | 河北省农林科学院旱作农业研究所Dryland Farming Institute, Hebei Academy of Agriculture and Forestry Sciences |
KNX22002 | KNX22002 | 湖北省康农生物育种研究院Hubei Kangnong Biological Breeding Research Institute |
雅玉青贮8号Yayuqingzhu8 | YYQZ8 | 四川雅玉科技股份有限公司Sichuan Yayu Technology Co., Ltd. |
省份 Province | 试点 Location | 纬度 Latitude (N,°) | 经度 Longitude (E,°) | 海拔 Altitude (m) |
---|---|---|---|---|
安徽Anhui | 合肥Hefei | 32.87 | 117.56 | 25 |
安徽Anhui | 宿州Suzhou | 33.70 | 117.08 | 29 |
河北Hebei | 邯郸Handan | 36.49 | 114.54 | 55 |
河南Henan | 郑州Zhengzhou | 34.79 | 113.68 | 52 |
河南Henan | 濮阳Puyang | 35.76 | 115.04 | 56 |
江苏Jiangsu | 连云港Lianyungang | 34.54 | 119.21 | 7 |
陕西Shaanxi | 杨凌Yangling | 34.27 | 108.08 | 465 |
陕西Shaanxi | 富平Fuping | 34.75 | 109.17 | 388 |
陕西Shaanxi | 宝鸡Baoji | 34.37 | 107.20 | 837 |
山东Shandong | 德州Dezhou | 37.68 | 116.81 | 23 |
山东Shandong | 嘉祥Jiaxiang | 35.36 | 116.40 | 36 |
山东Shandong | 泰安Taian | 36.20 | 117.09 | 147 |
表2 2022年青贮玉米区域试验地点、地理位置与海拔高度
Table 2 Locations, geography and altitude of the silage maize regional trial in 2022
省份 Province | 试点 Location | 纬度 Latitude (N,°) | 经度 Longitude (E,°) | 海拔 Altitude (m) |
---|---|---|---|---|
安徽Anhui | 合肥Hefei | 32.87 | 117.56 | 25 |
安徽Anhui | 宿州Suzhou | 33.70 | 117.08 | 29 |
河北Hebei | 邯郸Handan | 36.49 | 114.54 | 55 |
河南Henan | 郑州Zhengzhou | 34.79 | 113.68 | 52 |
河南Henan | 濮阳Puyang | 35.76 | 115.04 | 56 |
江苏Jiangsu | 连云港Lianyungang | 34.54 | 119.21 | 7 |
陕西Shaanxi | 杨凌Yangling | 34.27 | 108.08 | 465 |
陕西Shaanxi | 富平Fuping | 34.75 | 109.17 | 388 |
陕西Shaanxi | 宝鸡Baoji | 34.37 | 107.20 | 837 |
山东Shandong | 德州Dezhou | 37.68 | 116.81 | 23 |
山东Shandong | 嘉祥Jiaxiang | 35.36 | 116.40 | 36 |
山东Shandong | 泰安Taian | 36.20 | 117.09 | 147 |
来源Source | 协变量名称Environmental covariables name | 单位Unit |
---|---|---|
NASA POWERa | 水平面太阳辐射量Insolation incident on a horizontal surface (ALLSKY_SFC_SW_DWN) | MJ·m-2·d-1 |
向下热红外(长波)辐射通量Downward thermal infrared (longwave) radiative flux (ALLSKY_SFC_LW_DWN) | MJ·m-2·d-1 | |
地外辐射量Extraterrestrial radiation (RTA) | MJ·m-2·d-1 | |
离地2 m处的风速Wind speed at 2 m above the surface of the earth (WS2M) | m·s-1 | |
离地2 m处的最低温度Minimum air temperature at 2?m above the surface of the earth (T2M_MIN) | ℃·d -1 | |
离地2 m处的平均温度Average air temperature at 2 m?above the surface of the earth (T2M) | ℃·d -1 | |
离地2 m处的最高温度Maximum air temperature at 2?m above the surface of the earth (T2M_MAX) | ℃·d -1 | |
离地2 m处的露点温度Dew-point temperature at 2 m above the surface of the earth (T2MDEW) | ℃·d -1 | |
离地2 m处的相对湿度Relative air humidity at 2 m above the surface of the earth (RH2M) | % | |
降水量Precipitation (PRECTOT) | mm·d-1 | |
Calculatedb | 离地2 m处的温度区间Temperature range at 2 m above the surface of the earth (T2M_RANGE) | ℃·d -1 |
潜在蒸散量Potential evapotranspiration (ETP) | mm·d-1 | |
降水亏缺Deficit by precipitation (PEPT) | mm·d-1 | |
饱和水汽压差Vapor pressure deficit (VPD) | kPa·℃·d-1 | |
饱和蒸汽压曲线斜率Slope of saturation vapor pressure curve (SPV) | kPa·℃·d-1 | |
温度对辐射利用效率的影响Effect of temperature on radiation-use efficiency (FRUE) | 0~1 | |
生长度日Growing degree day (GDD) | ℃·d -1 | |
实际日照时间Actual duration of sunshine (n) | h | |
白昼时间Daylight hours (N) | h |
表3 本研究中的19种环境协变量
Table 3 List of environmental covariables (EC) used in this study
来源Source | 协变量名称Environmental covariables name | 单位Unit |
---|---|---|
NASA POWERa | 水平面太阳辐射量Insolation incident on a horizontal surface (ALLSKY_SFC_SW_DWN) | MJ·m-2·d-1 |
向下热红外(长波)辐射通量Downward thermal infrared (longwave) radiative flux (ALLSKY_SFC_LW_DWN) | MJ·m-2·d-1 | |
地外辐射量Extraterrestrial radiation (RTA) | MJ·m-2·d-1 | |
离地2 m处的风速Wind speed at 2 m above the surface of the earth (WS2M) | m·s-1 | |
离地2 m处的最低温度Minimum air temperature at 2?m above the surface of the earth (T2M_MIN) | ℃·d -1 | |
离地2 m处的平均温度Average air temperature at 2 m?above the surface of the earth (T2M) | ℃·d -1 | |
离地2 m处的最高温度Maximum air temperature at 2?m above the surface of the earth (T2M_MAX) | ℃·d -1 | |
离地2 m处的露点温度Dew-point temperature at 2 m above the surface of the earth (T2MDEW) | ℃·d -1 | |
离地2 m处的相对湿度Relative air humidity at 2 m above the surface of the earth (RH2M) | % | |
降水量Precipitation (PRECTOT) | mm·d-1 | |
Calculatedb | 离地2 m处的温度区间Temperature range at 2 m above the surface of the earth (T2M_RANGE) | ℃·d -1 |
潜在蒸散量Potential evapotranspiration (ETP) | mm·d-1 | |
降水亏缺Deficit by precipitation (PEPT) | mm·d-1 | |
饱和水汽压差Vapor pressure deficit (VPD) | kPa·℃·d-1 | |
饱和蒸汽压曲线斜率Slope of saturation vapor pressure curve (SPV) | kPa·℃·d-1 | |
温度对辐射利用效率的影响Effect of temperature on radiation-use efficiency (FRUE) | 0~1 | |
生长度日Growing degree day (GDD) | ℃·d -1 | |
实际日照时间Actual duration of sunshine (n) | h | |
白昼时间Daylight hours (N) | h |
性状 Traits | 变异来源 Source of variations | 自由度 Degrees of freedom | 平方和 Sum of square | 占总变异百分比 Percentage of total variation (%) | 占互作百分比 Percentage of interaction (%) |
---|---|---|---|---|---|
生物干重 Dry yield | 基因型 Genotype (G) | 14 | 95.16** | 3.43 | |
环境 Environment (E) | 11 | 2276.58** | 82.12 | ||
互作G×E | 154 | 400.50** | 14.45 | ||
第一主成分PC1 | 24 | 189.27** | 47.26 | ||
第二主成分PC2 | 22 | 84.44** | 21.08 | ||
残差Residuals | 128 | 126.79 | |||
总变异Total variation | 179 | 2772.24 | |||
生育期 Growth period | 基因型 Genotype (G) | 14 | 79.37** | 3.81 | |
环境 Environment (E) | 11 | 1748.95** | 84.05 | ||
互作G×E | 154 | 252.63** | 12.14 | ||
第一主成分PC1 | 24 | 112.15** | 44.39 | ||
第二主成分PC2 | 22 | 79.10** | 31.31 | ||
残差Residuals | 128 | 83.83 | |||
总变异Total variation | 179 | 14864.15 | |||
株高 Plant height | 基因型 Genotype (G) | 14 | 36968.14** | 50.31 | |
环境 Environment (E) | 11 | 100822.91** | 27.97 | ||
互作G×E | 154 | 34840.26** | 21.72 | ||
第一主成分PC1 | 24 | 11410.03** | 32.75 | ||
第二主成分PC2 | 22 | 8889.42** | 25.51 | ||
残差Residuals | 128 | 1540.81 | |||
总变异Total variation | 179 | 172631.31 | |||
干物质含量 Dry matter content | 基因型 Genotype (G) | 14 | 480.96** | 5.07 | |
环境 Environment (E) | 11 | 5046.51** | 53.27 | ||
互作G×E | 154 | 3946.87** | 41.66 | ||
第一主成分PC1 | 24 | 3250.96** | 82.37 | ||
第二主成分PC2 | 22 | 313.20** | 7.94 | ||
残差Residuals | 128 | 531.82 | |||
总变异Total variation | 179 | 9474.14 | |||
茎腐病 Stalk rot | 基因型 Genotype (G) | 14 | 67.72** | 8.46 | |
环境 Environment (E) | 11 | 209.99** | 26.25 | ||
互作G×E | 154 | 522.40** | 65.29 | ||
第一主成分PC1 | 24 | 399.31** | 76.44 | ||
第二主成分PC2 | 22 | 109.14** | 20.89 | ||
残差Residuals | 128 | 24.84 | |||
总变异Total variation | 179 | 800.11 | |||
倒伏率 Lodging rate | 基因型 Genotype (G) | 14 | 1002.30** | 5.32 | |
环境 Environment (E) | 11 | 5264.89** | 27.92 | ||
互作G×E | 154 | 12589.04** | 66.76 | ||
第一主成分PC1 | 24 | 7654.30** | 60.80 | ||
第二主成分PC2 | 22 | 3271.77** | 25.99 | ||
残差Residuals | 128 | 2315.76 | |||
总变异Total variation | 179 | 18856.24 | |||
倒折率 Discount rate | 基因型 Genotype (G) | 14 | 685.08** | 7.03 | |
环境 Environment (E) | 11 | 1359.77** | 13.96 | ||
互作G×E | 154 | 7697.88** | 79.01 | ||
第一主成分PC1 | 24 | 7105.94** | 92.31 | ||
第二主成分PC2 | 22 | 408.53** | 5.31 | ||
残差Residuals | 128 | 311.46 | |||
总变异Total variation | 179 | 9742.72 | |||
空秆率 Empty ears rate | 基因型 Genotype (G) | 14 | 779.86** | 6.94 | |
环境 Environment (E) | 11 | 2481.37** | 22.07 | ||
互作G×E | 154 | 7981.68** | 70.99 | ||
第一主成分PC1 | 24 | 7089.47** | 88.82 | ||
第二主成分PC2 | 22 | 354.93** | 4.45 | ||
残差Residuals | 128 | 809.12 | |||
总变异Total variation | 179 | 11242.91 | |||
穗位高 Ear height | 基因型 Genotype (G) | 14 | 24024.48** | 33.47 | |
环境 Environment (E) | 11 | 27545.98** | 38.38 | ||
互作G×E | 154 | 20203.52ns | 28.15 | ||
第一主成分PC1 | 24 | 5625.45** | 27.84 | ||
第二主成分PC2 | 22 | 4527.88** | 22.41 | ||
残差Residuals | 128 | 13196.68 | |||
总变异Total variation | 179 | 71773.98 | |||
小斑病 Southern leaf blight | 基因型 Genotype (G) | 14 | 10.13** | 2.85 | |
环境 Environment (E) | 11 | 265.13** | 74.52 | ||
互作G×E | 154 | 80.53** | 22.63 | ||
第一主成分PC1 | 24 | 36.88** | 45.80 | ||
第二主成分PC2 | 22 | 16.25** | 20.18 | ||
残差Residuals | 128 | 38.02 | |||
总变异Total variation | 179 | 355.80 | |||
弯孢叶斑病 Curvular leaf spot | 基因型 Genotype (G) | 14 | 13.91** | 7.51 | |
环境 Environment (E) | 11 | 105.24** | 56.82 | ||
互作G×E | 154 | 66.09** | 35.68 | ||
第一主成分PC1 | 24 | 26.12** | 39.52 | ||
第二主成分PC2 | 22 | 21.17** | 32.03 | ||
残差Residuals | 128 | 28.61 | |||
总变异Total variation | 179 | 185.24 | |||
南方锈病 Southern corn rust | 基因型 Genotype (G) | 14 | 4.31** | 6.37 | |
环境 Environment (E) | 11 | 22.31** | 32.99 | ||
互作G×E | 154 | 41.02** | 60.65 | ||
第一主成分PC1 | 24 | 27.65** | 67.40 | ||
第二主成分PC2 | 22 | 13.37** | 32.60 | ||
残差Residuals | 128 | 16.74 | |||
总变异Total variation | 179 | 67.64 | |||
黑粉病 Common smut | 基因型 Genotype (G) | 14 | 23.71** | 7.45 | |
环境 Environment (E) | 11 | 63.73** | 20.07 | ||
互作G×E | 154 | 230.09** | 72.46 | ||
第一主成分PC1 | 24 | 199.15** | 86.55 | ||
第二主成分PC2 | 22 | 24.65** | 10.71 | ||
残差Residuals | 128 | 9.28 | |||
总变异Total variation | 179 | 317.53 |
表4 参试品种农艺性状AMMI模型分析
Table 4 The analysis of AMMI model for various agronomic traits of evaluated silage maize genotypes
性状 Traits | 变异来源 Source of variations | 自由度 Degrees of freedom | 平方和 Sum of square | 占总变异百分比 Percentage of total variation (%) | 占互作百分比 Percentage of interaction (%) |
---|---|---|---|---|---|
生物干重 Dry yield | 基因型 Genotype (G) | 14 | 95.16** | 3.43 | |
环境 Environment (E) | 11 | 2276.58** | 82.12 | ||
互作G×E | 154 | 400.50** | 14.45 | ||
第一主成分PC1 | 24 | 189.27** | 47.26 | ||
第二主成分PC2 | 22 | 84.44** | 21.08 | ||
残差Residuals | 128 | 126.79 | |||
总变异Total variation | 179 | 2772.24 | |||
生育期 Growth period | 基因型 Genotype (G) | 14 | 79.37** | 3.81 | |
环境 Environment (E) | 11 | 1748.95** | 84.05 | ||
互作G×E | 154 | 252.63** | 12.14 | ||
第一主成分PC1 | 24 | 112.15** | 44.39 | ||
第二主成分PC2 | 22 | 79.10** | 31.31 | ||
残差Residuals | 128 | 83.83 | |||
总变异Total variation | 179 | 14864.15 | |||
株高 Plant height | 基因型 Genotype (G) | 14 | 36968.14** | 50.31 | |
环境 Environment (E) | 11 | 100822.91** | 27.97 | ||
互作G×E | 154 | 34840.26** | 21.72 | ||
第一主成分PC1 | 24 | 11410.03** | 32.75 | ||
第二主成分PC2 | 22 | 8889.42** | 25.51 | ||
残差Residuals | 128 | 1540.81 | |||
总变异Total variation | 179 | 172631.31 | |||
干物质含量 Dry matter content | 基因型 Genotype (G) | 14 | 480.96** | 5.07 | |
环境 Environment (E) | 11 | 5046.51** | 53.27 | ||
互作G×E | 154 | 3946.87** | 41.66 | ||
第一主成分PC1 | 24 | 3250.96** | 82.37 | ||
第二主成分PC2 | 22 | 313.20** | 7.94 | ||
残差Residuals | 128 | 531.82 | |||
总变异Total variation | 179 | 9474.14 | |||
茎腐病 Stalk rot | 基因型 Genotype (G) | 14 | 67.72** | 8.46 | |
环境 Environment (E) | 11 | 209.99** | 26.25 | ||
互作G×E | 154 | 522.40** | 65.29 | ||
第一主成分PC1 | 24 | 399.31** | 76.44 | ||
第二主成分PC2 | 22 | 109.14** | 20.89 | ||
残差Residuals | 128 | 24.84 | |||
总变异Total variation | 179 | 800.11 | |||
倒伏率 Lodging rate | 基因型 Genotype (G) | 14 | 1002.30** | 5.32 | |
环境 Environment (E) | 11 | 5264.89** | 27.92 | ||
互作G×E | 154 | 12589.04** | 66.76 | ||
第一主成分PC1 | 24 | 7654.30** | 60.80 | ||
第二主成分PC2 | 22 | 3271.77** | 25.99 | ||
残差Residuals | 128 | 2315.76 | |||
总变异Total variation | 179 | 18856.24 | |||
倒折率 Discount rate | 基因型 Genotype (G) | 14 | 685.08** | 7.03 | |
环境 Environment (E) | 11 | 1359.77** | 13.96 | ||
互作G×E | 154 | 7697.88** | 79.01 | ||
第一主成分PC1 | 24 | 7105.94** | 92.31 | ||
第二主成分PC2 | 22 | 408.53** | 5.31 | ||
残差Residuals | 128 | 311.46 | |||
总变异Total variation | 179 | 9742.72 | |||
空秆率 Empty ears rate | 基因型 Genotype (G) | 14 | 779.86** | 6.94 | |
环境 Environment (E) | 11 | 2481.37** | 22.07 | ||
互作G×E | 154 | 7981.68** | 70.99 | ||
第一主成分PC1 | 24 | 7089.47** | 88.82 | ||
第二主成分PC2 | 22 | 354.93** | 4.45 | ||
残差Residuals | 128 | 809.12 | |||
总变异Total variation | 179 | 11242.91 | |||
穗位高 Ear height | 基因型 Genotype (G) | 14 | 24024.48** | 33.47 | |
环境 Environment (E) | 11 | 27545.98** | 38.38 | ||
互作G×E | 154 | 20203.52ns | 28.15 | ||
第一主成分PC1 | 24 | 5625.45** | 27.84 | ||
第二主成分PC2 | 22 | 4527.88** | 22.41 | ||
残差Residuals | 128 | 13196.68 | |||
总变异Total variation | 179 | 71773.98 | |||
小斑病 Southern leaf blight | 基因型 Genotype (G) | 14 | 10.13** | 2.85 | |
环境 Environment (E) | 11 | 265.13** | 74.52 | ||
互作G×E | 154 | 80.53** | 22.63 | ||
第一主成分PC1 | 24 | 36.88** | 45.80 | ||
第二主成分PC2 | 22 | 16.25** | 20.18 | ||
残差Residuals | 128 | 38.02 | |||
总变异Total variation | 179 | 355.80 | |||
弯孢叶斑病 Curvular leaf spot | 基因型 Genotype (G) | 14 | 13.91** | 7.51 | |
环境 Environment (E) | 11 | 105.24** | 56.82 | ||
互作G×E | 154 | 66.09** | 35.68 | ||
第一主成分PC1 | 24 | 26.12** | 39.52 | ||
第二主成分PC2 | 22 | 21.17** | 32.03 | ||
残差Residuals | 128 | 28.61 | |||
总变异Total variation | 179 | 185.24 | |||
南方锈病 Southern corn rust | 基因型 Genotype (G) | 14 | 4.31** | 6.37 | |
环境 Environment (E) | 11 | 22.31** | 32.99 | ||
互作G×E | 154 | 41.02** | 60.65 | ||
第一主成分PC1 | 24 | 27.65** | 67.40 | ||
第二主成分PC2 | 22 | 13.37** | 32.60 | ||
残差Residuals | 128 | 16.74 | |||
总变异Total variation | 179 | 67.64 | |||
黑粉病 Common smut | 基因型 Genotype (G) | 14 | 23.71** | 7.45 | |
环境 Environment (E) | 11 | 63.73** | 20.07 | ||
互作G×E | 154 | 230.09** | 72.46 | ||
第一主成分PC1 | 24 | 199.15** | 86.55 | ||
第二主成分PC2 | 22 | 24.65** | 10.71 | ||
残差Residuals | 128 | 9.28 | |||
总变异Total variation | 179 | 317.53 |
图1 基于20 a气象因子信息划分4个生态区的聚类热图ME1: 第1生态区 The first mega-environments; ME2: 第2生态区 The second mega-environments; ME3: 第3生态区 The third mega-environments; ME4: 第4生态区 The fourth mega-environments.
Fig.1 Heat map showing the four delineated mega-environments based on twenty years information on meteorological factors
图2 基于长期气象数据(20 a气候信息)的环境变量间主成分分析的双标图TMED: 平均温度Average air temperature; TMIN: 最低温度Minimum air temperature; TMAX: 最高温度Maximum air temperature; PRECTOT: 降水量Precipitation; TRANGE: 温度区间Daily temperature range; PETP: 降水亏缺Deficit by precipitation; RH2M: 相对湿度Air relative humidity; ETP: 潜在蒸散量Potential evapotranspiration; SPV: 饱和蒸汽压曲线斜率Slope of saturation vapor pressure curve; VPD: 饱和水汽压差Vapor pressure deficit; GDD: 生长度日Growing degree day; n: 实际日照时间Actual duration of sunshine; N: 白昼时间Daylight hours; T2MDEW: 离地2 m处的露点温度Dew-point temperature at 2 m above the surface of the earth; WS2M: 离地2 m处的风速Wind speed at 2 m above the surface of the earth; RTA: 地外辐射量Extraterrestrial radiation; ASKSW: 水平面太阳辐射量Insolation incident on a horizontal surface; ASKLW: 向下热红外(长波)辐射通量Downward thermal infrared (longwave) radiative flux; FRUE: 温度对辐射利用效率Effect of temperature on radiation-use efficiency.
Fig.2 Biplot for the principal component analysis between environmental variables based on long-term pattern data (20 yrs of climate information)
图 3 2022年不同试点(A)和生态区(B)中观察到的不同生长阶段的降水亏缺值
Fig.3 Quantiles for deficit by precipitation observed in the studied environments (A) and mega-environments (B) across distinct crop stages in 2022
图4 2022年不同试点(A)和生态区(B)中观察到的不同生长阶段的最高温度
Fig.4 Quantiles for maximum temperature observed in the studied environments (A) and mega-environments (B) across distinct crop stages in 2022
图5 2022年不同试点(A)和生态区(B)中观察到的不同生长阶段的相对湿度
Fig.5 Quantiles for the air relative humidity observed in the studied environments (A) and mega-environments (B) across distinct crop stages in 2022
图6 被测性状相关性热图DY: 生物干重Dry yield; DM: 干物质含量Dry matter content; GP: 生育期Growth period; PH: 株高Plant height; EH: 穗位高Ear height; LR: 倒伏率Lodging rate; DR: 倒折率Discount rate; CS: 黑粉病Common smut; SR: 茎腐病Stalk rot; EER: 空秆率Empty ears rate; SLB: 小斑病Southern leaf blight; CLS: 弯孢叶斑病Curvular leaf spot; SCR: 南方锈病Southern corn rust; WPSC: 全株淀粉含量Whole plant starch content; NDF: 中性洗涤纤维含量Neutral detergent fiber content; ADF: 酸性洗涤纤维含量Acid detergent fiber content; CPC: 粗蛋白含量Crude protein content. ns: P≥0.05; *: P<0.05; **: P<0.01; ***: P<0.001. 下同The same below.
Fig.6 Pearson’s correlation heatmaps among evaluated traits across tested silage maize genotypes
图7 2022年参试品种GT双标图(A)和GYT双标图(B)CD3601: 成单3601 Chengdan3601; WNKQZ8: 皖农科青贮8号 Wannongkeqingzhu8; YD805: 渝单805 Yudan805; YY7758: 雅玉7758 Yayu7758; SN8872: SN8872; QX001: 青秀001 Qingxiu001; ZD511: 正大511 Zhengda511; ZQZ7: 郑青贮7号 Zhengqingzhu7; HF159: 泓丰159 Hongfeng159; LQZ303: 连青贮303 Lianqingzhu303; AKQ2: 安科青2号 Ankeqing2; JC6: 金诚6 Jincheng6; HY1996: 衡玉1996 Hengyu1996; YYQZ8: 雅玉青贮8号Yayuqingzhu8. Y×DM: 生物干重×干物质含量Dry yield×dry matter content; Y×GP: 生物干重×生育期Dry yield×growth period; Y×PH: 生物干重×株高Dry yield×plant height; Y×EH: 生物干重×穗位高Dry yield×ear height; Y×LR(-1): 生物干重×倒伏率Dry yield×lodging rate; Y×DR(-1): 生物干重×倒折率Dry yield×discount rate; Y×CS(-1): 生物干重×黑粉病Dry yield×common rate; Y×SR(-1): 生物干重×茎腐病Dry yield×stalk rot; Y×EER(-1): 生物干重×空秆率Dry yield×empty ears rate; Y×SLB(-1): 生物干重×小斑病Dry yield×southern leaf blight; Y×CLS(-1): 生物干重×弯孢叶斑病Dry yield×curvular leaf spot; Y×SCR(-1): 生物干重×南方锈病Dry yield×southern corn rust; Y×WPSC: 生物干重×全株淀粉含量Dry yield×whole plant starch content; Y×NDF(-1): 生物干重×中性洗涤纤维含量Dry yield×neutral detergent fiber content; Y×ADF(-1): 生物干重×酸性洗涤纤维含量Dry yield×acid detergent fiber content; Y×CPC: 生物干重×粗蛋白含量Dry yield×crude protein content. 产量-性状组合后面加后缀(-1)的表示产量-性状组合值越小越好。Yield-trait combinations followed by the suffix (-1) indicate that smaller values of yield-trait combinations are preferred. 下同The same below.
Fig.7 The GT (A) and GYT (B) biplot of tested silage maize hybrids in 2022
产量×性状 Yield×trait | 产量×酸性洗涤纤维含量Y×ADF(-1) | 产量×弯孢叶斑病 Y×CLS(-1) | 产量×粗蛋白含量 Y×CPC | 产量×黑粉病Y×CS(-1) | 产量×干物质含量Y×DM | 产量×倒折率Y×DR(-1) | 产量×空秆率Y×EER(-1) | 产量×穗位高Y×EH | 产量×生育期Y×GP | 产量×倒伏率Y×LR(-1) | 产量×中性洗涤纤维含量Y×NDF(-1) | 产量×株高Y×PH | 产量×南方锈病Y×SCR(-1) | 产量×小斑病Y×SLB(-1) | 产量×茎腐病Y×SR(-1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
产量×弯孢叶斑病Y×CLS(-1) | 0.153 | ||||||||||||||
产量×粗蛋白含量Y×CPC | 0.230 | 0.223 | |||||||||||||
产量×黑粉病Y×CS(-1) | 0.084 | 0.266 | 0.049 | ||||||||||||
产量×干物质含量Y×DM | 0.265 | 0.402 | 0.141 | 0.573* | |||||||||||
产量×倒折率Y×DR(-1) | 0.151 | -0.019 | 0.282 | 0.038 | 0.157 | ||||||||||
产量×空秆率Y×EER(-1) | 0.473 | -0.034 | 0.349 | -0.017 | 0.432 | 0.429 | |||||||||
产量×穗位高Y×EH | 0.530* | 0.673** | 0.252 | 0.043 | 0.078 | -0.195 | -0.095 | ||||||||
产量×生育期Y×GP | 0.661** | 0.516* | 0.396 | 0.230 | 0.571* | 0.125 | 0.192 | 0.710 | |||||||
产量×倒伏率Y×LR(-1) | 0.218 | -0.081 | 0.592* | -0.039 | -0.037 | 0.623** | 0.256 | -0.034 | 0.268 | ||||||
产量×中性洗涤纤维含量Y×NDF(-1) | 0.931** | 0.233 | 0.200 | 0.197 | 0.323 | 0.181 | 0.324 | 0.542* | 0.735** | 0.257 | |||||
产量×株高Y×PH | 0.495* | 0.727** | 0.265 | 0.193 | 0.421 | 0.011 | -0.083 | 0.837** | 0.864** | 0.000 | 0.599* | ||||
产量×南方锈病Y×SCR(-1) | 0.185 | 0.177 | 0.018 | -0.020 | 0.293 | -0.264 | -0.360 | 0.263 | 0.513* | -0.065 | 0.199 | 0.532* | |||
产量×小斑病Y×SLB(-1) | 0.331 | 0.508* | 0.179 | 0.048 | 0.204 | 0.234 | 0.010 | 0.615** | 0.711** | 0.371 | 0.430 | 0.651** | 0.208 | ||
产量×茎腐病Y×SR(-1) | 0.239 | -0.267 | 0.101 | 0.130 | 0.008 | 0.328 | -0.031 | -0.046 | 0.216 | 0.447 | 0.356 | 0.051 | -0.013 | 0.354 | |
产量×全株淀粉含量Y×WPSC | 0.860** | 0.240 | 0.137 | 0.270 | 0.299 | 0.194 | 0.339 | 0.510 | 0.652** | 0.211 | 0.960** | 0.539* | 0.027 | 0.382 | 0.232 |
表5 2022年产量与性状组合皮尔逊相关性分析
Table 5 Pearson correlations between yield-trait in 2022
产量×性状 Yield×trait | 产量×酸性洗涤纤维含量Y×ADF(-1) | 产量×弯孢叶斑病 Y×CLS(-1) | 产量×粗蛋白含量 Y×CPC | 产量×黑粉病Y×CS(-1) | 产量×干物质含量Y×DM | 产量×倒折率Y×DR(-1) | 产量×空秆率Y×EER(-1) | 产量×穗位高Y×EH | 产量×生育期Y×GP | 产量×倒伏率Y×LR(-1) | 产量×中性洗涤纤维含量Y×NDF(-1) | 产量×株高Y×PH | 产量×南方锈病Y×SCR(-1) | 产量×小斑病Y×SLB(-1) | 产量×茎腐病Y×SR(-1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
产量×弯孢叶斑病Y×CLS(-1) | 0.153 | ||||||||||||||
产量×粗蛋白含量Y×CPC | 0.230 | 0.223 | |||||||||||||
产量×黑粉病Y×CS(-1) | 0.084 | 0.266 | 0.049 | ||||||||||||
产量×干物质含量Y×DM | 0.265 | 0.402 | 0.141 | 0.573* | |||||||||||
产量×倒折率Y×DR(-1) | 0.151 | -0.019 | 0.282 | 0.038 | 0.157 | ||||||||||
产量×空秆率Y×EER(-1) | 0.473 | -0.034 | 0.349 | -0.017 | 0.432 | 0.429 | |||||||||
产量×穗位高Y×EH | 0.530* | 0.673** | 0.252 | 0.043 | 0.078 | -0.195 | -0.095 | ||||||||
产量×生育期Y×GP | 0.661** | 0.516* | 0.396 | 0.230 | 0.571* | 0.125 | 0.192 | 0.710 | |||||||
产量×倒伏率Y×LR(-1) | 0.218 | -0.081 | 0.592* | -0.039 | -0.037 | 0.623** | 0.256 | -0.034 | 0.268 | ||||||
产量×中性洗涤纤维含量Y×NDF(-1) | 0.931** | 0.233 | 0.200 | 0.197 | 0.323 | 0.181 | 0.324 | 0.542* | 0.735** | 0.257 | |||||
产量×株高Y×PH | 0.495* | 0.727** | 0.265 | 0.193 | 0.421 | 0.011 | -0.083 | 0.837** | 0.864** | 0.000 | 0.599* | ||||
产量×南方锈病Y×SCR(-1) | 0.185 | 0.177 | 0.018 | -0.020 | 0.293 | -0.264 | -0.360 | 0.263 | 0.513* | -0.065 | 0.199 | 0.532* | |||
产量×小斑病Y×SLB(-1) | 0.331 | 0.508* | 0.179 | 0.048 | 0.204 | 0.234 | 0.010 | 0.615** | 0.711** | 0.371 | 0.430 | 0.651** | 0.208 | ||
产量×茎腐病Y×SR(-1) | 0.239 | -0.267 | 0.101 | 0.130 | 0.008 | 0.328 | -0.031 | -0.046 | 0.216 | 0.447 | 0.356 | 0.051 | -0.013 | 0.354 | |
产量×全株淀粉含量Y×WPSC | 0.860** | 0.240 | 0.137 | 0.270 | 0.299 | 0.194 | 0.339 | 0.510 | 0.652** | 0.211 | 0.960** | 0.539* | 0.027 | 0.382 | 0.232 |
品种名称 Genotype name | 产量×酸性洗涤纤维含量Y×ADF(-1) | 产量×弯孢叶斑病Y×CLS(-1) | 产量×粗蛋白含量Y×CPC | 产量×黑粉病Y×CS(-1) | 产量×干物质含量Y×DM | 产量×倒折率Y×DR(-1) | 产量×空秆率Y×EER(-1) | 产量×穗位高Y×EH | 产量×生育期Y×GP | 产量×倒伏率Y×LR(-1) | 产量×中性洗涤纤维含量Y×NDF(-1) | 产量×株高Y×PH | 产量×南方锈病Y×SCR(-1) | 产量×小斑病Y×SLB(-1) | 产量×茎腐病Y×SR(-1) | 产量×全株淀粉含量Y×WPSC | 理想指数SI |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
安科青2号 AKQ2 | -2.33 | -0.40 | 0.77 | 0.03 | -1.10 | 0.69 | -0.34 | -1.02 | -1.50 | 1.04 | -2.54 | -1.39 | -1.38 | 0.03 | -0.37 | -2.28 | -0.76 |
成单3601 CD3601 | -0.12 | -1.16 | -0.75 | 0.64 | 0.41 | 0.57 | -0.75 | -0.56 | 0.47 | -0.12 | 0.24 | 0.29 | 0.99 | -0.61 | -0.13 | 0.49 | -0.01 |
泓丰159 HF159 | -0.22 | 0.21 | 0.12 | 0.98 | 0.08 | -1.84 | -1.62 | 0.53 | 0.71 | 0.67 | 0.29 | 0.17 | 1.05 | 0.62 | 0.74 | 0.16 | 0.16 |
衡玉1996 HY1996 | 0.63 | -0.02 | 0.16 | 0.85 | -0.12 | 0.99 | 0.56 | -0.44 | -0.24 | 0.30 | 0.43 | -0.78 | -1.03 | -0.18 | 0.67 | 0.37 | 0.13 |
金诚6 JC6 | 0.03 | -2.27 | -0.71 | 0.05 | -0.86 | 0.09 | 0.69 | -2.06 | -1.87 | 0.10 | 0.06 | -2.18 | -1.43 | -1.64 | 0.39 | 0.38 | -0.70 |
KNX22002 | -1.16 | -0.61 | -0.83 | -0.44 | 1.01 | -0.78 | 0.36 | -0.78 | -0.23 | -1.67 | -1.17 | -0.56 | -0.07 | -0.13 | 0.20 | -1.29 | -0.51 |
连青贮303 LQZ303 | 0.09 | 1.39 | -0.24 | 0.19 | 0.80 | -1.25 | 0.88 | 0.53 | 0.01 | -1.39 | -0.28 | 0.19 | -0.02 | -0.66 | -3.28 | 0.18 | -0.18 |
青秀001 QX001 | -0.29 | 1.63 | 0.81 | 0.54 | 0.45 | 0.67 | -1.09 | 0.67 | 0.93 | 0.07 | 0.38 | 1.72 | 1.14 | 1.29 | 0.11 | 0.34 | 0.59 |
SN8872 | -0.51 | 0.63 | 0.63 | 0.48 | 1.37 | 1.05 | 0.66 | -1.00 | -0.38 | 0.57 | -0.33 | -0.21 | -0.12 | -1.31 | 0.08 | -0.47 | 0.07 |
晥农科青贮8号 WNKQZ8 | 1.10 | 0.28 | 1.02 | 0.58 | 0.54 | -0.92 | 0.71 | 0.80 | 0.82 | -0.48 | 0.98 | 0.99 | 0.18 | 0.09 | 0.75 | 0.77 | 0.51 |
渝单805 YD805 | 1.41 | 1.11 | 0.24 | 0.41 | 0.51 | 1.33 | 1.20 | 1.75 | 1.49 | 1.01 | 1.80 | 1.29 | -1.60 | 2.04 | 0.83 | 2.20 | 1.06 |
雅玉7758 YY7758 | -0.29 | 0.38 | -2.70 | 0.30 | -0.44 | -0.74 | -1.51 | 0.27 | -0.79 | -1.62 | -0.45 | 0.16 | 0.53 | 0.18 | 0.08 | -0.56 | -0.45 |
雅玉青贮8号 YYQZ8 | -0.56 | -0.37 | -0.01 | -2.34 | -2.69 | -1.02 | -1.36 | 0.71 | -1.13 | -0.72 | -0.61 | -0.31 | -0.49 | -1.04 | -0.63 | -0.61 | -0.82 |
正大511 ZD511 | 1.53 | -0.33 | 1.46 | 0.01 | 0.31 | 0.27 | 0.71 | 1.04 | 1.12 | 0.70 | 0.74 | 0.69 | 1.21 | 0.15 | 0.10 | 0.27 | 0.62 |
郑青贮7号 ZQZ7 | 0.69 | -0.48 | 0.02 | -2.26 | -0.26 | 0.91 | 0.91 | -0.45 | 0.59 | 1.56 | 0.47 | -0.08 | 1.01 | 1.17 | 0.47 | 0.05 | 0.27 |
表6 2022年参试品种标准化GYT数据和理想指数
Table 6 Standardized genotype by yield×trait (GYT) data and superiority index (SI) for the evaluated maize genotypes in 2022
品种名称 Genotype name | 产量×酸性洗涤纤维含量Y×ADF(-1) | 产量×弯孢叶斑病Y×CLS(-1) | 产量×粗蛋白含量Y×CPC | 产量×黑粉病Y×CS(-1) | 产量×干物质含量Y×DM | 产量×倒折率Y×DR(-1) | 产量×空秆率Y×EER(-1) | 产量×穗位高Y×EH | 产量×生育期Y×GP | 产量×倒伏率Y×LR(-1) | 产量×中性洗涤纤维含量Y×NDF(-1) | 产量×株高Y×PH | 产量×南方锈病Y×SCR(-1) | 产量×小斑病Y×SLB(-1) | 产量×茎腐病Y×SR(-1) | 产量×全株淀粉含量Y×WPSC | 理想指数SI |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
安科青2号 AKQ2 | -2.33 | -0.40 | 0.77 | 0.03 | -1.10 | 0.69 | -0.34 | -1.02 | -1.50 | 1.04 | -2.54 | -1.39 | -1.38 | 0.03 | -0.37 | -2.28 | -0.76 |
成单3601 CD3601 | -0.12 | -1.16 | -0.75 | 0.64 | 0.41 | 0.57 | -0.75 | -0.56 | 0.47 | -0.12 | 0.24 | 0.29 | 0.99 | -0.61 | -0.13 | 0.49 | -0.01 |
泓丰159 HF159 | -0.22 | 0.21 | 0.12 | 0.98 | 0.08 | -1.84 | -1.62 | 0.53 | 0.71 | 0.67 | 0.29 | 0.17 | 1.05 | 0.62 | 0.74 | 0.16 | 0.16 |
衡玉1996 HY1996 | 0.63 | -0.02 | 0.16 | 0.85 | -0.12 | 0.99 | 0.56 | -0.44 | -0.24 | 0.30 | 0.43 | -0.78 | -1.03 | -0.18 | 0.67 | 0.37 | 0.13 |
金诚6 JC6 | 0.03 | -2.27 | -0.71 | 0.05 | -0.86 | 0.09 | 0.69 | -2.06 | -1.87 | 0.10 | 0.06 | -2.18 | -1.43 | -1.64 | 0.39 | 0.38 | -0.70 |
KNX22002 | -1.16 | -0.61 | -0.83 | -0.44 | 1.01 | -0.78 | 0.36 | -0.78 | -0.23 | -1.67 | -1.17 | -0.56 | -0.07 | -0.13 | 0.20 | -1.29 | -0.51 |
连青贮303 LQZ303 | 0.09 | 1.39 | -0.24 | 0.19 | 0.80 | -1.25 | 0.88 | 0.53 | 0.01 | -1.39 | -0.28 | 0.19 | -0.02 | -0.66 | -3.28 | 0.18 | -0.18 |
青秀001 QX001 | -0.29 | 1.63 | 0.81 | 0.54 | 0.45 | 0.67 | -1.09 | 0.67 | 0.93 | 0.07 | 0.38 | 1.72 | 1.14 | 1.29 | 0.11 | 0.34 | 0.59 |
SN8872 | -0.51 | 0.63 | 0.63 | 0.48 | 1.37 | 1.05 | 0.66 | -1.00 | -0.38 | 0.57 | -0.33 | -0.21 | -0.12 | -1.31 | 0.08 | -0.47 | 0.07 |
晥农科青贮8号 WNKQZ8 | 1.10 | 0.28 | 1.02 | 0.58 | 0.54 | -0.92 | 0.71 | 0.80 | 0.82 | -0.48 | 0.98 | 0.99 | 0.18 | 0.09 | 0.75 | 0.77 | 0.51 |
渝单805 YD805 | 1.41 | 1.11 | 0.24 | 0.41 | 0.51 | 1.33 | 1.20 | 1.75 | 1.49 | 1.01 | 1.80 | 1.29 | -1.60 | 2.04 | 0.83 | 2.20 | 1.06 |
雅玉7758 YY7758 | -0.29 | 0.38 | -2.70 | 0.30 | -0.44 | -0.74 | -1.51 | 0.27 | -0.79 | -1.62 | -0.45 | 0.16 | 0.53 | 0.18 | 0.08 | -0.56 | -0.45 |
雅玉青贮8号 YYQZ8 | -0.56 | -0.37 | -0.01 | -2.34 | -2.69 | -1.02 | -1.36 | 0.71 | -1.13 | -0.72 | -0.61 | -0.31 | -0.49 | -1.04 | -0.63 | -0.61 | -0.82 |
正大511 ZD511 | 1.53 | -0.33 | 1.46 | 0.01 | 0.31 | 0.27 | 0.71 | 1.04 | 1.12 | 0.70 | 0.74 | 0.69 | 1.21 | 0.15 | 0.10 | 0.27 | 0.62 |
郑青贮7号 ZQZ7 | 0.69 | -0.48 | 0.02 | -2.26 | -0.26 | 0.91 | 0.91 | -0.45 | 0.59 | 1.56 | 0.47 | -0.08 | 1.01 | 1.17 | 0.47 | 0.05 | 0.27 |
1 | He W R, Sun Q, Xi L Q, et al. Variety comparison test of silage corn in Aral area. Xinjiang Agricultural Sciences, 2022, 59(12): 2948-2956. |
何万荣, 孙强, 席琳乔, 等. 9个青贮玉米品种灰色关联综合评价. 新疆农业科学, 2022, 59(12): 2948-2956. | |
2 | Zhu L L, Zhang Y M, Li W C, et al. Adaption to the Plateau climate in Qinghai of 39 silage maize varieties cultivated in different ecological regions of China. Acta Prataculturae Sinica, 2023, 32(4): 68-78. |
朱丽丽, 张业猛, 李万才, 等. 39个我国不同生态区培育的青贮玉米品种在青海高原适应性研究. 草业学报, 2023, 32(4): 68-78. | |
3 | Bernardi A, Härter C J, Silva A W, et al. A meta-analysis examining lactic acid bacteria inoculants for maize silage: Effects on fermentation, aerobic stability, nutritive value and livestock production. Grass and Forage Science, 2019, 74(4): 596-612. |
4 | Qi H, Lu G, Li Z, et al. Cladosporium species causing leaf spot on silage maize based on multi-locus phylogeny in China. Journal of Phytopathology, 2023, 171(2): 82-91. |
5 | Liu X, Wang B, Zhu X Y, et al. A comparison of 21 varieties of silage maize in Henan Province. Acta Prataculturae Sinica, 2019, 28(8): 49-60. |
刘晓, 王博, 朱晓艳, 等. 21个粮饲兼用型青贮玉米在河南的品种比较试验. 草业学报, 2019, 28(8): 49-60. | |
6 | Ligarreto M G, Pimentel L C. Grain yield and genotype×environment interaction in bean cultivars with different growth habits. Plant Production Science, 2022, 25(2): 232-241. |
7 | Diouf I, Derivot L, Koussevitzky S, et al. Genetic basis of phenotypic plasticity and genotype×environment interactions in a multi-parental tomato population. Journal of Experimental Botany, 2020, 71(18): 5365-5376. |
8 | Wang X Y, Cheng J, Gao S, et al. Evaluation of adaptability of naked oat varieties in the alpine region of North China based on the AMMI model and GGE Biplot. Acta Prataculturae Sinica, 2022, 31(12): 76-84. |
王星宇, 程静, 高生, 等. 应用 AMMI模型和 GGE 双标图评价裸燕麦品种在华北高寒区的适应性. 草业学报, 2022, 31(12): 76-84. | |
9 | Zhang J H, Wu B, Bai S S, et al. Comprehensive evaluation of whole-plant yield and silage quality of 16 maize varieties in the Huang-Huai-Hai area of China. Journal of China Agricultural University, 2023, 28(3): 11-24. |
张进红, 吴波, 柏杉杉, 等. 16个玉米品种在黄淮海地区的全株产量与青贮效果综合评价. 中国农业大学学报, 2023, 28(3): 11-24. | |
10 | Jiang H X, Liu D, Zhang D M, et al. Investigation and analysis of whole corn silage production in Shandong Province. China Herbivore Science, 2020, 40(6): 63-66, 74. |
姜慧新, 刘栋, 张德敏, 等. 山东省全株玉米青贮生产情况调查与分析. 中国草食动物科学, 2020, 40(6): 63-66, 74. | |
11 | Ling M H, Han H B, Hu X Y, et al. Drought characteristics and causes during summer maize growth period on Huang-Huai-Hai Plain based on daily scale SPEI. Agricultural Water Management, 2023, 280: 108198. |
12 | Wicaksana N, Maulana H, Yuwariah Y, et al. Selection of high yield and stable maize hybrids in mega-environments of Java island, Indonesia. Agronomy, 2022, 12(12): 2923. |
13 | Crevelari J A, Souza Y P D, Santos J S, et al. Adaptability and stability of corn hybrids for silage via genotype and genotype×environment interaction biplot. Agronomy Journal, 2023, 115(2): 687-697. |
14 | Yan W K, Frégeau-reid J. Genotype by yield*trait (GYT) biplot: A novel approach for genotype selection based on multiple traits. Scientific Reports, 2018, 8(1): 8242. |
15 | Elfanah A M, Darwish M A, Selim A I, et al. Spectral reflectance indices’ performance to identify seawater salinity tolerance in bread wheat genotypes using genotype by yield*trait biplot approach. Agronomy, 2023, 13(2): 353. |
16 | Xu N Y, Zhao S Q, Zhang F, et al. Retrospective evaluation of cotton varieties nationally registered for the Northwest Inland cotton growing regions based on GYT biplot analysis. Acta Agronomica Sinica, 2021, 47(4): 660-671. |
许乃银, 赵素琴, 张芳, 等. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价. 作物学报, 2021, 47(4): 660-671. | |
17 | Yue H W, Han X, Wei J W, et al. Comprehensive evaluation of maize hybrids tested in Huang-Huai-Hai summer maize regional trial based on GYT biplot analysis. Acta Agronomica Sinica, 2023, 49(5): 1231-1248. |
岳海旺, 韩轩, 魏建伟, 等. 基于GYT双标图分析对黄淮海夏玉米区域试验品种综合评价. 作物学报, 2023, 49(5): 1231-1248. | |
18 | Gholizadeh A, Oghan H A, Alizadeh B, et al. Phenotyping new rapeseed lines based on multiple traits: Application of GT and GYT biplot analyses. Food Science & Nutrition, 2023, 11(2): 853-862. |
19 | Costa-neto G, Galli G, Carvalho H F, et al. EnvRtype: A software to interplay enviromics and quantitative genomics in agriculture. G3 Genes Genomes Genetics, 2021, 11(4): DOI: 10.1093/g3journal/jkab040. |
20 | Kassambara A, Mundt F. Factoextra: Extract and visualize the results of multivariate data analyses. R package version 1.0.7. 2020. https://www.rdocumentation.org/packages/factoextra/versions/1.0.7. |
21 | Sparks A H. Nasapower: A NASA POWER global meteorology, surface solar energy and climatology data client for R. The Journal of Open Source Software, 2018, 3(30): 1035. |
22 | Ghanem M E, Marrou H, Sinclair T R. Physiological phenotyping of plants for crop improvement. Trends in Plant Science, 2015, 20(3): 139-144. |
23 | Yue H, Li H, Xu L, et al. Analysis of genotype-environment interactions of silage maize cultivars under environmental trials. Bangladesh Journal of Botany, 2020, 49(1): 55-63. |
24 | Kaplan M, Kokten K, Akcura M. Assessment of genotype×trait×environment interactions of silage maize genotypes through GGE Biplot. Chilean Journal of Agricultural Research, 2017, 77(3): 212-217. |
25 | Tang Q Y, Zhang C X. Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Science, 2013, 20(2): 254-260. |
26 | Tao F L, Xiao D P, Zhang S, et al. Wheat yield benefited from increases in minimum temperature in the Huang-Huai-Hai plain of China in the past three decades. Agricultural and Forest Meteorology, 2017, 239: 1-14. |
27 | Wang P, Wu D, Yang J, et al. Summer maize growth under different precipitation years in the Huang-Huai-Hai Plain of China. Agricultural and Forest Meteorology, 2020, 285: 107927. |
28 | Shekoofa A, Sinclair T R, Messina C D, et al. Variation among maize hybrids in response to high vapor pressure deficit at high temperatures. Crop Science, 2016, 56(1): 392-396. |
29 | Sadok W, Lopez J R, Smith K P. Transpiration increases under high-temperature stress: Potential mechanisms, trade-offs and prospects for crop resilience in a warming world. Plant, Cell & Environment, 2021, 44(7): 2102-2116. |
30 | Berry J O, Mure C M, Yerramsetty P. Regulation of Rubisco gene expression in C4 plants. Current Opinion in Plant Biology, 2016, 31: 23-28. |
31 | Liu W M, Liu Y E, Liu G Z, et al. Estimation of maize straw production and appropriate straw return rate in China. Agriculture, Ecosystems and Environment, 2022, 328: 107865. |
32 | Xu Y B. Envirotyping and its applications in crop science. Scientia Agricultura Sinica, 2015, 48(17): 3354-3371. |
徐云碧. 作物科学中的环境型鉴定(Envirotyping)及其应用. 中国农业科学, 2015, 48(17): 3354-3371. | |
33 | Das J, Poonia V, Jha S, et al. Understanding the climate change impact on crop yield over Eastern Himalayan Region: Ascertaining GCM and scenario uncertainty. Theoretical and Applied Climatology, 2020, 142: 467-482. |
34 | Yue H W, Wei J W, Xie J L, et al. Effect of interaction between genotype and environment on the grain yield of summer maize hybrids in Huanghuaihai region. Journal of China Agricultural University, 2022, 27(4): 31-43. |
岳海旺, 魏建伟, 谢俊良, 等. 基因型和环境互作对黄淮海夏玉米品种籽粒产量的影响. 中国农业大学学报, 2022, 27(4): 31-43. | |
35 | Badu-Apraku B, Akinwale R O, Ajala S O, et al. Relationships among traits of tropical early maize cultivars in contrasting environments. Agronomy Journal, 2011, 103(3): 717-729. |
36 | Boureima S, Yaou A. Genotype by yield*trait combination biplot approach to evaluate sesame genotypes on multiple traits basis. Turkish Journal of Field Crops, 2019, 24(2): 237-244. |
37 | da Cruz D P, de Oliveira T R A, Gomes A B S, et al. Selection of cowpea lines for multiple traits by GYT biplot analysis. Journal of Agricultural Studies, 2020, 8(2): 124-137. |
[1] | 王朋磊, 剡转转, 高莉娟, 马倩, 宗西方, 王升升, 张吉宇. 白花草木樨第二次轮回选择半同胞家系农艺性状的遗传变异分析[J]. 草业学报, 2022, 31(1): 238-245. |
[2] | 杜佳梦, 包刚, 佟斯琴, 黄晓君, 温都日娜, 美丽, 包玉海. 1982-2015年蒙古国植被覆盖变化及其与气候变化和人类活动的关系[J]. 草业学报, 2021, 30(2): 1-13. |
[3] | 乌尼图, 刘桂香, 杨勇, 宋向阳, 白海花. 基于光能利用率模型的内蒙古天然草原植被净初级生产力动态监测与气候因子的响应[J]. 草业学报, 2020, 29(11): 1-10. |
[4] | 拉多, 张燕杰, 刘杰, 崔玲玲, 庞有智. 拉萨河谷植物物种丰富度空间分布格局及其环境解释[J]. 草业学报, 2016, 25(10): 202-211. |
[5] | 樊江文,张良侠,张文彦,钟华平. 中国草地样带植物根系N、P元素特征及其与地理气候因子的关系[J]. 草业学报, 2014, 23(5): 69-76. |
[6] | 南丽丽,师尚礼,张建华. 不同根型苜蓿根系发育能力研究[J]. 草业学报, 2014, 23(2): 117-124. |
[7] | 张喜峰,张立新,高梅,韦成才,马英明,王平平,耿伟. 不同氮肥形态和腐殖酸对陕西典型生态区烤烟化学成分和产质量的影响[J]. 草业学报, 2013, 22(6): 60-67. |
[8] | 穆少杰,李建龙,杨红飞,刚成诚,陈奕兆. 内蒙古草地生态系统近10年NPP时空变化及其与气候的关系[J]. 草业学报, 2013, 22(3): 6-. |
[9] | 陆嘉惠,吕新,吴玲,李学禹. 三种药用甘草种子对盐渍环境的萌发响应及其适宜生态种植区[J]. 草业学报, 2013, 22(2): 195-202. |
[10] | 康萨如拉,牛建明,张庆,陈丽萍. 短花针茅叶片解剖结构及与气候因子的关系[J]. 草业学报, 2013, 22(1): 77-86. |
[11] | 周伟,王倩,章超斌,李建龙. 黑河中上游草地NDVI时空变化规律及其对气候因子的响应分析[J]. 草业学报, 2013, 22(1): 138-147. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||