| 1 |
Jiang P, Xiao L Q, Wan X, et al. Research progress on microbial carbon sequestration in soil: a review. Eurasian Soil Science, 2022, 55(10): 1395-1404.
|
| 2 |
Kroth P G. The biodiversity of carbon assimilation. Journal of Plant Physiology, 2015, 172: 76-81.
|
| 3 |
Lynn T M, Ge T, Yuan H Z, et al. Soil carbon-fixation rates and associated bacterial diversity and abundance in three natural ecosystems. Microbial Ecology, 2017, 73(3): 645-657.
|
| 4 |
Zhao K, Kong W D, Wang F, et al. Desert and steppe soils exhibit lower autotrophic microbial abundance but higher atmospheric CO2 fixation capacity than meadow soils. Soil Biology and Biochemistry, 2018, 127(1): 230-238.
|
| 5 |
Chen H, Wang F, Kong W D, et al. Soil microbial CO2 fixation plays a significant role in terrestrial carbon sink in a dryland ecosystem: A four-year small-scale field-plot observation on the Tibetan Plateau. Science of the Total Environment, 2021, 761: 143282.
|
| 6 |
Yang Z G, Zhang J G, Li J R, et al. Spatiotemporal dynamic variation of temperate grassland classes in Inner Mongolia in the last 20 years. Acta Prataculturae Sinica, 2023, 32(9): 1-16.
|
|
杨志贵, 张建国, 李锦荣, 等. 内蒙古温性草原草地类型近20年时空动态变化研究. 草业学报, 2023, 32(9): 1-16.
|
| 7 |
Yuan H Z, Ge T, Chen C Y, et al. Significant role for microbial autotrophy in the sequestration of soil carbon. Applied and Environmental Microbiology, 2012, 78(7): 2328-2336.
|
| 8 |
Sarfraz H, Zhang M, Zhu X X, et al. Significance of Fe(Ⅱ) and environmental factors on carbon-fixing bacterial community in two paddy soils. Ecotoxicology and Environmental Safety, 2019, 182: 109456.
|
| 9 |
Wu X H, Ge T, Yuan H Z, et al. Changes in bacterial CO2 fixation with depth in agricultural soils. Applied Microbiology and Biotechnology, 2014, 98: 2309-2319.
|
| 10 |
Gao J, Muhanmmad S, Yue L Y, et al. Changes in CO2-fixing microbial community characteristics with elevation and season in alpine meadow soils on the northern Tibetan Plateau. Acta Ecologica Sinica, 2018, 38(11): 3816-3824.
|
|
高静, Said Muhanmmad, 岳琳艳, 等. 藏北高原草甸土壤固碳微生物群落特征随海拔和季节的变化. 生态学报, 2018, 38(11): 3816-3824.
|
| 11 |
Liu Z, Sun Y F, Zhang Y Q, et al. Metagenomic and 13C tracing evidence for autotrophic atmospheric carbon absorption in a semiarid desert. Soil Biology and Biochemistry, 2018, 125: 156-166.
|
| 12 |
Mi Y, Guo R, Wang Y, et al. Responses of soil bacterial and fungal communities to precipitation in the desert steppe ecosystem of Ningxia. Acta Prataculturae Sinica, 2023, 32(11): 81-92.
|
|
米扬, 郭蓉, 王媛, 等. 宁夏荒漠草原土壤细菌与真菌群落对降水变化的响应. 草业学报, 2023, 32(11): 81-92.
|
| 13 |
Li J Y, Jin X Y, Zhang X C, et al. Comparative metagenomics of two distinct biological soil crusts in the Tengger Desert, China. Soil Biology and Biochemistry, 2020, 140: 107637.
|
| 14 |
Okyay T O, Nguyen H N, Castro S L, et al. CO2 sequestration by ureolytic microbial consortia through microbially-induced calcite precipitation. Science of the Total Environment, 2016, 572(1): 671-680.
|
| 15 |
Belnap J. The world at your feet: Desert biological soil crusts. Frontiers in Ecology and the Environment, 2003, 1(5): 181-189.
|
| 16 |
Ma W H, Han M, Lin X, et al. Carbon storage in vegetation of grasslands in Inner Mongolia. Journal of Arid Land Resources and Environment, 2006, 20(3): 192-195.
|
|
马文红, 韩梅, 林鑫, 等.内蒙古温带草地植被的碳储量.干旱区资源与环境, 2006, 20(3): 192-195.
|
| 17 |
Bai Y F, Wu J G, Xing Q, et al. Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau. Ecology, 2008, 89(8): 2140-2153.
|
| 18 |
Chen X J, Wu X H, Jian Y, et al. Carbon dioxide assimilation potential, functional gene amount and RubisCO activity of autotrophic microorganisms in agricultural soils. Environmental Science, 2014, 35(3): 1144-1150.
|
|
陈晓娟, 吴小红, 简燕, 等. 农田土壤自养微生物碳同化潜力及其功能基因数量、关键酶活性分析. 环境科学, 2014, 35(3): 1144-1150.
|
| 19 |
Liu Y Y, Wang S, Li S Z, et al. Advances in molecular ecology on microbial functional genes of carbon cycle. Microbiology China, 2017, 44(7): 1676-1689.
|
|
刘洋荧, 王尚, 厉舒祯, 等. 基于功能基因的微生物碳循环分子生态学研究进展. 微生物学通报, 2017, 44(7): 1676-1689.
|
| 20 |
Garritano A N, Song W, Thomas T. Carbon fixation pathways across the bacterial and archaeal tree of life. PNAS Nexus, 2022, 1(5): 1-12.
|
| 21 |
Correa S S, Schultz J, Lauersen K J, et al. Natural carbon fixation and advances in synthetic engineering for redesigning and creating new fixation pathways. Journal of Advanced Research, 2023, 47(Suppl C): 75-92.
|
| 22 |
Maestre F T, Delgado-Baquerizo M, Jeffries T C, et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(51): 15684-15689.
|
| 23 |
Wiseschart A, Mhuantong W, Tangphatsornruang S, et al. Shotgun metagenomic sequencing from Manao-Pee cave, Thailand, reveals insight into the microbial community structure and its metabolic potential. BMC Microbiology, 2019, 19(1): 144.
|
| 24 |
Huang Q, Huang Y, Wang B, et al. Metabolic pathways of CO2 fixing microorganisms determined C-fixation rates in grassland soils along the precipitation gradient. Soil Biology and Biochemistry, 2022, 172: 108764.
|
| 25 |
Bar-Even A, Noor E, Milo R. A survey of carbon fixation pathways through a quantitative lens. Journal of Experimental Botany, 2012, 63(6): 2325-2342.
|
| 26 |
Claassens N J, Sousa D Z, Dos Santos V A P M, et al. Harnessing the power of microbial autotrophy. Natural Reviews Microbiology, 2016, 14(11): 692-706.
|
| 27 |
Long X E, Yao H Y, Wang J, et al. Community structure and soil pH determine chemoautotrophic carbon dioxide fixation in drained paddy soils. Environmental Science & Technology, 2015, 49(12): 7152-7160.
|
| 28 |
Nowak M E, Beulig F, von Fischer J, et al. Autotrophic fixation of geogenic CO2 by microorganisms contributes to soil organic matter formation and alters isotope signatures in a wetland mofette. Biogeosciences, 2015, 12(3): 7169-7183.
|
| 29 |
Liu Z. Microbial pathways of atmospheric carbon dioxide fixation in soils in the Mu Us Desert. Beijing: Beijing Forestry University, 2019.
|
|
刘振. 毛乌素沙地土壤固定大气二氧化碳的微生物途径. 北京: 北京林业大学, 2019.
|
| 30 |
Sun Y Q. Community structure of microorganisms in lichen crusts and its function on carbon sequestration in the Mu Us Desert. Beijing: Beijing Forestry University, 2019.
|
|
孙永琦. 毛乌素沙地地衣结皮层微生物的群落结构及其固碳功能. 北京: 北京林业大学, 2019.
|
| 31 |
Evans M C, Buchanan B B, Arnon D I. A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proceedings of the National Academy of Sciences of the United States of America, 1966, 55(4): 928-934.
|
| 32 |
Hall J R, Mitchell K R, Jackson-Weaver O, et al. Molecular characterization of the diversity and distribution of a thermal spring microbial community by using rRNA and metabolic genes. Applied and Environmental Microbiology, 2008, 74(15): 4910-4922.
|
| 33 |
Gao L, Liu L, Lv A P, et al. Reversed oxidative TCA (roTCA) for carbon fixation by an Acidimicrobiia strain from a saline lake. The ISME Journal, 2024, 18(1), doi:https://doi.org/10.1093/ismejo/wrae147.
|
| 34 |
Zarzycki J, Brecht V, Müller M, et al. Identifying the missing steps of the autotrophic 3-hydroxypropionate CO2 fixation cycle in Chloroflexus aurantiacus. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(50): 21317-21322.
|
| 35 |
Rao M P N, Luo Z H, Dong Z Y, et al. Metagenomic analysis further extends the role of Chloroflexi in fundamental biogeochemical cycles. Environmental Research, 2022, 209(Suppl C): 112888.
|
| 36 |
Atomi H. Microbial enzymes involved in carbon dioxide fixation. Journal of Bioscience and Bioengineering, 2002, 94(6): 497-505.
|