草业学报 ›› 2024, Vol. 33 ›› Issue (12): 160-174.DOI: 10.11686/cyxb2024042
• 研究论文 • 上一篇
收稿日期:
2024-02-01
修回日期:
2024-03-16
出版日期:
2024-12-20
发布日期:
2024-10-09
通讯作者:
杨成德
作者简介:
. E-mail: yangcd@gsau.edu.cn基金资助:
Chen-yang ZHANG1(), Meng-jun JIN1, Yong-feng XU2, Cheng-de YANG1()
Received:
2024-02-01
Revised:
2024-03-16
Online:
2024-12-20
Published:
2024-10-09
Contact:
Cheng-de YANG
摘要:
为深入分析玉米连作对土壤微生物的影响,分别采集张掖市甘州区5、10、15、20、21年以上和临泽县10、15、20、21年以上的土样进行宏基因组分析。结果表明:随着连作年限的增长,两个地区的土壤细菌丰富度先升高后下降,多样性持续降低,其中甘州区的优势门变形菌门和放线菌门相对丰度先升高后下降,且在连作20年时显著降低(P<0.05),临泽县的酸杆菌门相对丰度持续下降,且在连作20年时较10年显著降低(P<0.05);随着连作年限的增长,真菌丰富度和多样性持续升高,其中甘州区的炭疽菌属和镰刀菌属真菌相对丰度在连作15和20年时显著增加(P<0.05),临泽县的镰刀菌属真菌在连作15和21年以上时上下波动。Beta多样性分析发现,不同连作年限之间,土壤细菌和真菌群落结构均差异明显;甘州区的土壤样品中代谢途径、微生物代谢、碳代谢和丙酮酸代谢功能在连作10年时相较于连作5年显著降低(P<0.05),临泽县的代谢途径、次生代谢物的生物合成和丙酮酸代谢功能在连作20年时相较于连作10年显著增加(P<0.05),而双组件系统功能在连作20年时相较于连作10年显著降低(P<0.05)。研究结果表明,连作影响土壤微生物多样性、群落结构及土壤代谢类型,且甘州区的变形菌门、放线菌门相对丰度的降低,炭疽菌属、镰刀菌属真菌的增加,临泽县的酸杆菌门相对丰度的降低以及镰刀菌属真菌的波动可能是玉米连作障碍的表现之一。
张晨阳, 金梦军, 许永锋, 杨成德. 基于宏基因组分析玉米连作对土壤微生物群落结构的影响[J]. 草业学报, 2024, 33(12): 160-174.
Chen-yang ZHANG, Meng-jun JIN, Yong-feng XU, Cheng-de YANG. Effects of maize continuous cropping on soil microbial community structure based on metagenomic analysis[J]. Acta Prataculturae Sinica, 2024, 33(12): 160-174.
分组Group | 样品编号Number of samples | 采集地点Collection site | 经度Longitude (E) | 纬度Latitude (N) |
---|---|---|---|---|
GZ1 | GDM1 | 甘州区大满镇Daman Township, Ganzhou District | 100°24′05″ | 38°47′47″ |
GJA1 | 甘州区靖安乡Jingan Township, Ganzhou District | 100°25′34″ | 39°05′42″ | |
GMY1 | 甘州区明永镇Mingyong Township, Ganzhou District | 100°18′29″ | 39°00′44″ | |
GZ2 | GDM2 | 甘州区大满镇Daman Township, Ganzhou District | 100°24′05″ | 38°47′47″ |
GJA2 | 甘州区靖安乡Jingan Township, Ganzhou District | 100°25′34″ | 39°05′42″ | |
GMY2 | 甘州区明永镇Mingyong Township, Ganzhou District | 100°18′29″ | 39°00′44″ | |
LZ2 | LZBQ2 | 临泽县板桥镇Banqiao Township, Linze County | 100°17′08″ | 39°16′38″ |
LNJ2 | 临泽县倪家营镇Nijiaying Township, Linze County | 100°07′43″ | 39°01′53″ | |
LXH2 | 临泽县新华镇Xinhua Township, Linze County | 100°01′17″ | 39°11′41″ | |
GZ3 | GDM3 | 甘州区大满镇Daman Township, Ganzhou District | 100°24′05″ | 38°47′47″ |
GJA3 | 甘州区靖安乡Jingan Township, Ganzhou District | 100°25′34″ | 39°05′42″ | |
GMY3 | 甘州区明永镇Mingyong Township, Ganzhou District | 100°18′29″ | 39°00′44″ | |
LZ3 | LZBQ3 | 临泽县板桥镇Banqiao Township, Linze County | 100°17′08″ | 39°16′38″ |
LNJ3 | 临泽县倪家营镇Nijiaying Township, Linze County | 100°07′43″ | 39°01′53″ | |
LXH3 | 临泽县新华镇Xinhua Township, Linze County | 100°01′17″ | 39°11′41″ | |
GZ4 | GDM4 | 甘州区大满镇Daman Township, Ganzhou District | 100°24′05″ | 38°47′47″ |
GJA4 | 甘州区靖安乡Jingan Township, Ganzhou District | 100°25′34″ | 39°05′42″ | |
GMY4 | 甘州区明永镇Mingyong Township, Ganzhou District | 100°18′29″ | 39°00′44″ | |
LZ4 | LZBQ4 | 临泽县板桥镇Banqiao Township, Linze County | 100°17′08″ | 39°16′38″ |
LNJ4 | 临泽县倪家营镇Nijiaying Township, Linze County | 100°07′43″ | 39°01′53″ | |
LXH4 | 临泽县新华镇Xinhua Township, Linze County | 100°01′17″ | 39°11′41″ | |
GZ5 | GDM5 | 甘州区大满镇Daman Township, Ganzhou District | 100°24′05″ | 38°47′47″ |
GJA5 | 甘州区靖安乡Jingan Township, Ganzhou District | 100°25′34″ | 39°05′42″ | |
GMY5 | 甘州区明永镇Mingyong Township, Ganzhou District | 100°18′29″ | 39°00′44″ | |
LZ5 | LZBQ5 | 临泽县板桥镇Banqiao Township, Linze County | 100°17′08″ | 39°16′38″ |
LNJ5 | 临泽县倪家营镇Nijiaying Township, Linze County | 100°07′43″ | 39°01′53″ | |
LXH5 | 临泽县新华镇Xinhua Township, Linze County | 100°01′17″ | 39°11′41″ |
表1 土壤样品信息
Table 1 Soil sample information
分组Group | 样品编号Number of samples | 采集地点Collection site | 经度Longitude (E) | 纬度Latitude (N) |
---|---|---|---|---|
GZ1 | GDM1 | 甘州区大满镇Daman Township, Ganzhou District | 100°24′05″ | 38°47′47″ |
GJA1 | 甘州区靖安乡Jingan Township, Ganzhou District | 100°25′34″ | 39°05′42″ | |
GMY1 | 甘州区明永镇Mingyong Township, Ganzhou District | 100°18′29″ | 39°00′44″ | |
GZ2 | GDM2 | 甘州区大满镇Daman Township, Ganzhou District | 100°24′05″ | 38°47′47″ |
GJA2 | 甘州区靖安乡Jingan Township, Ganzhou District | 100°25′34″ | 39°05′42″ | |
GMY2 | 甘州区明永镇Mingyong Township, Ganzhou District | 100°18′29″ | 39°00′44″ | |
LZ2 | LZBQ2 | 临泽县板桥镇Banqiao Township, Linze County | 100°17′08″ | 39°16′38″ |
LNJ2 | 临泽县倪家营镇Nijiaying Township, Linze County | 100°07′43″ | 39°01′53″ | |
LXH2 | 临泽县新华镇Xinhua Township, Linze County | 100°01′17″ | 39°11′41″ | |
GZ3 | GDM3 | 甘州区大满镇Daman Township, Ganzhou District | 100°24′05″ | 38°47′47″ |
GJA3 | 甘州区靖安乡Jingan Township, Ganzhou District | 100°25′34″ | 39°05′42″ | |
GMY3 | 甘州区明永镇Mingyong Township, Ganzhou District | 100°18′29″ | 39°00′44″ | |
LZ3 | LZBQ3 | 临泽县板桥镇Banqiao Township, Linze County | 100°17′08″ | 39°16′38″ |
LNJ3 | 临泽县倪家营镇Nijiaying Township, Linze County | 100°07′43″ | 39°01′53″ | |
LXH3 | 临泽县新华镇Xinhua Township, Linze County | 100°01′17″ | 39°11′41″ | |
GZ4 | GDM4 | 甘州区大满镇Daman Township, Ganzhou District | 100°24′05″ | 38°47′47″ |
GJA4 | 甘州区靖安乡Jingan Township, Ganzhou District | 100°25′34″ | 39°05′42″ | |
GMY4 | 甘州区明永镇Mingyong Township, Ganzhou District | 100°18′29″ | 39°00′44″ | |
LZ4 | LZBQ4 | 临泽县板桥镇Banqiao Township, Linze County | 100°17′08″ | 39°16′38″ |
LNJ4 | 临泽县倪家营镇Nijiaying Township, Linze County | 100°07′43″ | 39°01′53″ | |
LXH4 | 临泽县新华镇Xinhua Township, Linze County | 100°01′17″ | 39°11′41″ | |
GZ5 | GDM5 | 甘州区大满镇Daman Township, Ganzhou District | 100°24′05″ | 38°47′47″ |
GJA5 | 甘州区靖安乡Jingan Township, Ganzhou District | 100°25′34″ | 39°05′42″ | |
GMY5 | 甘州区明永镇Mingyong Township, Ganzhou District | 100°18′29″ | 39°00′44″ | |
LZ5 | LZBQ5 | 临泽县板桥镇Banqiao Township, Linze County | 100°17′08″ | 39°16′38″ |
LNJ5 | 临泽县倪家营镇Nijiaying Township, Linze County | 100°07′43″ | 39°01′53″ | |
LXH5 | 临泽县新华镇Xinhua Township, Linze County | 100°01′17″ | 39°11′41″ |
图1 不同连作年限土壤细菌门水平的相对丰度GZ1、GZ2、GZ3、GZ4和GZ5分别代表甘州区连作5、10、15、20和21年以上,LZ2、LZ3、LZ4和LZ5分别代表临泽县连作10、15、20和21年以上。下同。GZ1, GZ2, GZ3, GZ4 and GZ5 represent 5, 10, 15, 20, and more than 21 years continuous cropping in Ganzhou District; LZ2, LZ3, LZ4 and LZ5 represent 10, 15, 20, and more than 21 years continuous cropping in Linze County. The same below.
Fig.1 Relative abundance of soil bacteria phylum levels for different years of continuous cropping
地区 District | 分组 Group | 变形菌门 Proteobacteria | 酸杆菌门 Acidobacteria | 放线菌门 Actinobacteria |
---|---|---|---|---|
甘州区 Ganzhou District | GZ1 | 24.58±0.00b | 24.19±1.87b | 4.17±0.12c |
GZ2 | 25.89±0.25a | 26.72±2.49b | 7.15±0.02b | |
GZ3 | 26.66±0.81a | 27.10±0.35b | 12.21±2.35a | |
GZ4 | 19.78±0.03c | 30.32±1.39a | 8.70±1.62b | |
GZ5 | 19.75±0.96c | 26.96±0.04b | 3.27±0.58c | |
临泽县 Linze County | LZ2 | 23.95±0.39b | 27.46±0.36a | 1.99±0.29c |
LZ3 | 22.34±1.38c | 25.58±1.37ab | 4.30±0.25bc | |
LZ4 | 25.37±0.14a | 23.66±0.51b | 7.70±1.00b | |
LZ5 | 26.30±0.44a | 20.60±2.03c | 12.57±4.91a |
表2 甘州区和临泽县不同连作年限土壤细菌优势门相对丰度
Table 2 Relative abundance of soil bacterial dominant phylum for different continuous cropping years in Ganzhou District and Linze County (%)
地区 District | 分组 Group | 变形菌门 Proteobacteria | 酸杆菌门 Acidobacteria | 放线菌门 Actinobacteria |
---|---|---|---|---|
甘州区 Ganzhou District | GZ1 | 24.58±0.00b | 24.19±1.87b | 4.17±0.12c |
GZ2 | 25.89±0.25a | 26.72±2.49b | 7.15±0.02b | |
GZ3 | 26.66±0.81a | 27.10±0.35b | 12.21±2.35a | |
GZ4 | 19.78±0.03c | 30.32±1.39a | 8.70±1.62b | |
GZ5 | 19.75±0.96c | 26.96±0.04b | 3.27±0.58c | |
临泽县 Linze County | LZ2 | 23.95±0.39b | 27.46±0.36a | 1.99±0.29c |
LZ3 | 22.34±1.38c | 25.58±1.37ab | 4.30±0.25bc | |
LZ4 | 25.37±0.14a | 23.66±0.51b | 7.70±1.00b | |
LZ5 | 26.30±0.44a | 20.60±2.03c | 12.57±4.91a |
地区 District | 分组 Group | 未命名酸杆菌属Acidobacteria_noname | 未命名β-变形菌属Beta-Proteobacterua_noname | 未命名δ-变形菌属Delta-Proteobacteria_noname |
---|---|---|---|---|
甘州区 Ganzhou District | GZ1 | 8.59±0.48b | 1.46±0.02a | 1.52±0.03a |
GZ2 | 11.44±0.61a | 1.66±0.08a | 1.74±0.22a | |
GZ3 | 11.61±0.46a | 1.84±0.44a | 1.82±0.50a | |
GZ4 | 9.31±0.11b | 1.73±0.23a | 1.64±0.02a | |
GZ5 | 11.88±0.10a | 1.47±0.05a | 1.44±0.80a | |
临泽县 Linze County | LZ2 | 12.17±0.28a | 1.88±0.07a | 2.24±0.17a |
LZ3 | 9.94±0.39b | 1.70±0.17a | 1.78±0.09b | |
LZ4 | 11.36±0.62a | 1.69±0.01a | 1.57±0.07c | |
LZ5 | 8.85±0.90b | 1.30±1.14b | 1.50±0.07c |
表3 甘州区和临泽县不同连作年限土壤细菌优势属相对丰度
Table 3 Relative abundance of soil bacterial dominant genus for different continuous cropping years in Ganzhou District and Linze County (%)
地区 District | 分组 Group | 未命名酸杆菌属Acidobacteria_noname | 未命名β-变形菌属Beta-Proteobacterua_noname | 未命名δ-变形菌属Delta-Proteobacteria_noname |
---|---|---|---|---|
甘州区 Ganzhou District | GZ1 | 8.59±0.48b | 1.46±0.02a | 1.52±0.03a |
GZ2 | 11.44±0.61a | 1.66±0.08a | 1.74±0.22a | |
GZ3 | 11.61±0.46a | 1.84±0.44a | 1.82±0.50a | |
GZ4 | 9.31±0.11b | 1.73±0.23a | 1.64±0.02a | |
GZ5 | 11.88±0.10a | 1.47±0.05a | 1.44±0.80a | |
临泽县 Linze County | LZ2 | 12.17±0.28a | 1.88±0.07a | 2.24±0.17a |
LZ3 | 9.94±0.39b | 1.70±0.17a | 1.78±0.09b | |
LZ4 | 11.36±0.62a | 1.69±0.01a | 1.57±0.07c | |
LZ5 | 8.85±0.90b | 1.30±1.14b | 1.50±0.07c |
地区 District | 分组 Group | 子囊菌门 Ascomycota | 毛霉菌门 Mucoromycota | 壶菌门 Chytridiomycota |
---|---|---|---|---|
甘州区 Ganzhou District | GZ1 | 80.15±0.69c | 5.22±0.13a | 1.99±0.46bc |
GZ2 | 83.04±0.79b | 1.85±0.23c | 2.97±0.01ab | |
GZ3 | 85.28±1.53a | 3.79±0.83b | 1.71±0.66bc | |
GZ4 | 84.68±1.52ab | 4.22±0.81b | 3.90±1.19a | |
GZ5 | 84.15±0.19ab | 0.54±0.01d | 1.07±1.85c | |
临泽县 Linze County | LZ2 | 78.17±0.30c | 4.85±0.33a | 1.00±0.44b |
LZ3 | 88.72±1.59a | 1.89±0.24b | 0.00±0.00c | |
LZ4 | 90.20±0.59a | 1.33±1.33b | 1.11±0.12b | |
LZ5 | 80.26±0.14b | 5.54±2.46a | 3.40±0.29a |
表4 甘州区和临泽县不同连作年限土壤真菌优势门相对丰度
Table 4 Relative abundance of soil fungi dominant phylum for different continuous cropping years in Ganzhou District and Linze County (%)
地区 District | 分组 Group | 子囊菌门 Ascomycota | 毛霉菌门 Mucoromycota | 壶菌门 Chytridiomycota |
---|---|---|---|---|
甘州区 Ganzhou District | GZ1 | 80.15±0.69c | 5.22±0.13a | 1.99±0.46bc |
GZ2 | 83.04±0.79b | 1.85±0.23c | 2.97±0.01ab | |
GZ3 | 85.28±1.53a | 3.79±0.83b | 1.71±0.66bc | |
GZ4 | 84.68±1.52ab | 4.22±0.81b | 3.90±1.19a | |
GZ5 | 84.15±0.19ab | 0.54±0.01d | 1.07±1.85c | |
临泽县 Linze County | LZ2 | 78.17±0.30c | 4.85±0.33a | 1.00±0.44b |
LZ3 | 88.72±1.59a | 1.89±0.24b | 0.00±0.00c | |
LZ4 | 90.20±0.59a | 1.33±1.33b | 1.11±0.12b | |
LZ5 | 80.26±0.14b | 5.54±2.46a | 3.40±0.29a |
地区 District | 分组 Group | 轮枝孢属 Verticillium | 炭疽菌属 Colletotrichum | 镰刀菌属 Fusarium |
---|---|---|---|---|
甘州区 Ganzhou District | GZ1 | 10.46±0.03b | 4.15±0.36d | 0.33±0.33d |
GZ2 | 3.67±0.12e | 4.37±0.54d | 1.18±0.14c | |
GZ3 | 13.55±0.95a | 6.28±0.37c | 3.54±0.24b | |
GZ4 | 6.32±0.60d | 8.48±0.36b | 7.12±0.74a | |
GZ5 | 8.30±0.01c | 10.76±0.74a | 0.40±0.40d | |
临泽县 Linze County | LZ2 | 8.76±0.49ab | 8.61±0.77a | 3.16±0.03b |
LZ3 | 10.29±0.06a | 6.42±0.48a | 4.43±0.52a | |
LZ4 | 7.15±1.14b | 9.05±0.50a | 0.66±0.66d | |
LZ5 | 4.67±1.27c | 6.14±3.06a | 1.93±0.07c |
表5 甘州区和临泽县不同连作年限土壤真菌优势属相对丰度
Table 5 Relative abundance of soil fungi dominant genus for different continuous cropping years in Ganzhou District and Linze County (%)
地区 District | 分组 Group | 轮枝孢属 Verticillium | 炭疽菌属 Colletotrichum | 镰刀菌属 Fusarium |
---|---|---|---|---|
甘州区 Ganzhou District | GZ1 | 10.46±0.03b | 4.15±0.36d | 0.33±0.33d |
GZ2 | 3.67±0.12e | 4.37±0.54d | 1.18±0.14c | |
GZ3 | 13.55±0.95a | 6.28±0.37c | 3.54±0.24b | |
GZ4 | 6.32±0.60d | 8.48±0.36b | 7.12±0.74a | |
GZ5 | 8.30±0.01c | 10.76±0.74a | 0.40±0.40d | |
临泽县 Linze County | LZ2 | 8.76±0.49ab | 8.61±0.77a | 3.16±0.03b |
LZ3 | 10.29±0.06a | 6.42±0.48a | 4.43±0.52a | |
LZ4 | 7.15±1.14b | 9.05±0.50a | 0.66±0.66d | |
LZ5 | 4.67±1.27c | 6.14±3.06a | 1.93±0.07c |
地区 District | 分组 Group | Chao1指数 Chao1 index | Ace指数 Ace index | 香农指数 Shannon index | 辛普森指数 Simpson index |
---|---|---|---|---|---|
甘州区 Ganzhou District | GZ1 | 2614.00±31.00b | 2614.11±30.89b | 6.20±0.01a | 0.92±0.01a |
GZ2 | 3843.80±126.41a | 3841.82±135.52a | 6.19±0.17a | 0.91±0.00a | |
GZ3 | 4007.44±251.53a | 4001.89±242.35a | 5.85±0.07b | 0.89±0.01b | |
GZ4 | 3934.44±104.32a | 3917.32±98.40a | 5.72±0.01b | 0.88±0.01b | |
GZ5 | 2569.00±99.58b | 2569.07±99.55b | 5.45±0.04c | 0.86±0.01c | |
临泽县 Linze County | LZ2 | 3377.80±420.80a | 3374.83±417.44a | 5.59±0.03c | 0.90±0.01b |
LZ3 | 3763.51±12.92a | 3430.34±261.89a | 5.94±0.01a | 0.92±0.01a | |
LZ4 | 3426.92±265.75a | 3376.42±13.29a | 5.83±0.00b | 0.89±0.01b | |
LZ5 | 2581.00±238.00b | 2581.10±238.10b | 5.49±0.04d | 0.89±0.00b |
表6 甘州区和临泽县不同连作年限土壤细菌群落的Alpha多样性指数
Table 6 Alpha diversity index of soil bacterial community in Ganzhou District and Linze County with different years of continuous cropping
地区 District | 分组 Group | Chao1指数 Chao1 index | Ace指数 Ace index | 香农指数 Shannon index | 辛普森指数 Simpson index |
---|---|---|---|---|---|
甘州区 Ganzhou District | GZ1 | 2614.00±31.00b | 2614.11±30.89b | 6.20±0.01a | 0.92±0.01a |
GZ2 | 3843.80±126.41a | 3841.82±135.52a | 6.19±0.17a | 0.91±0.00a | |
GZ3 | 4007.44±251.53a | 4001.89±242.35a | 5.85±0.07b | 0.89±0.01b | |
GZ4 | 3934.44±104.32a | 3917.32±98.40a | 5.72±0.01b | 0.88±0.01b | |
GZ5 | 2569.00±99.58b | 2569.07±99.55b | 5.45±0.04c | 0.86±0.01c | |
临泽县 Linze County | LZ2 | 3377.80±420.80a | 3374.83±417.44a | 5.59±0.03c | 0.90±0.01b |
LZ3 | 3763.51±12.92a | 3430.34±261.89a | 5.94±0.01a | 0.92±0.01a | |
LZ4 | 3426.92±265.75a | 3376.42±13.29a | 5.83±0.00b | 0.89±0.01b | |
LZ5 | 2581.00±238.00b | 2581.10±238.10b | 5.49±0.04d | 0.89±0.00b |
地区 District | 分组 Group | Chao1指数 Chao1 index | Ace指数 Ace index | 香农指数 Shannon index | 辛普森指数 Simpson index |
---|---|---|---|---|---|
甘州区 Ganzhou District | GZ1 | 29.00±1.00c | 29.00±1.00b | 4.25±0.16b | 0.92±0.01b |
GZ2 | 29.50±1.50c | 29.50±1.50b | 4.45±0.17b | 0.93±0.01ab | |
GZ3 | 43.10±1.78b | 44.42±2.10a | 4.51±0.08a | 0.92±0.01b | |
GZ4 | 43.77±2.88ab | 43.80±3.28a | 4.54±0.07a | 0.94±0.00a | |
GZ5 | 47.33±2.34a | 47.60±2.75a | 4.62±0.04a | 0.94±0.00a | |
临泽县 Linze County | LZ2 | 29.50±0.50b | 29.50±0.50b | 4.18±0.00b | 0.91±0.00c |
LZ3 | 32.50±4.50b | 32.50±4.50b | 4.28±0.04b | 0.92±0.00bc | |
LZ4 | 45.83±4.84a | 45.90±4.90a | 4.64±0.23a | 0.94±0.00a | |
LZ5 | 47.60±4.40a | 47.59±3.88a | 4.74±0.02a | 0.93±0.01b |
表7 甘州区和临泽县不同连作年限土壤真菌群落的Alpha多样性指数
Table 7 Alpha diversity index of soil fungal community in Ganzhou District and Linze County with different continuous cropping years
地区 District | 分组 Group | Chao1指数 Chao1 index | Ace指数 Ace index | 香农指数 Shannon index | 辛普森指数 Simpson index |
---|---|---|---|---|---|
甘州区 Ganzhou District | GZ1 | 29.00±1.00c | 29.00±1.00b | 4.25±0.16b | 0.92±0.01b |
GZ2 | 29.50±1.50c | 29.50±1.50b | 4.45±0.17b | 0.93±0.01ab | |
GZ3 | 43.10±1.78b | 44.42±2.10a | 4.51±0.08a | 0.92±0.01b | |
GZ4 | 43.77±2.88ab | 43.80±3.28a | 4.54±0.07a | 0.94±0.00a | |
GZ5 | 47.33±2.34a | 47.60±2.75a | 4.62±0.04a | 0.94±0.00a | |
临泽县 Linze County | LZ2 | 29.50±0.50b | 29.50±0.50b | 4.18±0.00b | 0.91±0.00c |
LZ3 | 32.50±4.50b | 32.50±4.50b | 4.28±0.04b | 0.92±0.00bc | |
LZ4 | 45.83±4.84a | 45.90±4.90a | 4.64±0.23a | 0.94±0.00a | |
LZ5 | 47.60±4.40a | 47.59±3.88a | 4.74±0.02a | 0.93±0.01b |
图7 甘州区不同连作年限土壤KEGG Level A水平注释不同小写字母表示同一种功能不同连作年限在P<0.05水平上差异显著。下同。Different lowercase letters indicate significant difference at P<0.05 level for different years of continuous cropping for the same function. The same below.
Fig.7 KEGG Level A level annotation in Ganzhou District for different continuous cropping years
1 | Ren J Z, Li F D, Cao J M, et al. Development status, challenges, and solutions of China’s beef and mutton industry. Strategic Study of Chinese Academy of Engineering, 2019, 21(5): 67-73. |
任继周, 李发弟, 曹建民, 等. 我国牛羊肉产业的发展现状、挑战与出路. 中国工程科学, 2019, 21(5): 67-73. | |
2 | Fang J Y, Jing H C, Zhang W H, et al. The concept of “Grass-based Livestock Husbandry” and its practice in Hulun Buir, Inner Mongolia. Chinese Science Bulletin, 2018, 63(17): 1619-1631. |
方精云, 景海春, 张文浩, 等. 论草牧业的理论体系及其实践. 科学通报, 2018, 63(17): 1619-1631. | |
3 | Ren J Z. China’s traditional agricultural structure have to change-Suffering about nine consecutive years increasing of cereals. Acta Prataculturae Sinica, 2013, 22(3): 1-5. |
任继周. 我国传统农业结构不改变不行了-粮食九连增后的隐忧. 草业学报, 2013, 22(3): 1-5. | |
4 | Lu W H, Zhang N M, Bao L, et al. Study advances on characteristics, causes and control measures of continuous cropping obstacles of facility cultivation in China. Soils, 2020, 52(4): 651-658. |
卢维宏, 张乃明, 包立, 等. 我国设施栽培连作障碍特征与成因及防治措施的研究进展. 土壤, 2020, 52(4): 651-658. | |
5 | Yu Y C, Yang J Y, Zeng S C, et al. Soil pH, organic matter, and nutrient content change with the continuous cropping of Cunninghamia lanceolata plantations in South China. Journal of Soils and Sediments, 2017, 17(9): 2230-2238. |
6 | Fierer N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nature Reviews Microbiology, 2017, 15(10): 579-590. |
7 | Frąc M, Hannula S E, Bełka M, et al. Fungal biodiversity and their role in soil health. Frontiers in Microbiology, 2018, 9: 316246. |
8 | Song X L, Wu S T, Li J H, et al. Response of soil microbial community to continuous cropping system.Journal of Maize Sciences, 2022, 30(1): 172-181. |
宋秀丽, 吴舒婷, 李锦辉, 等. 土壤微生物群落对连作种植制度的响应. 玉米科学, 2022, 30(1): 172-181. | |
9 | Bai Y X, Wang G, Cheng Y D, et al. Soil acidification in continuously cropped tobacco alters bacterial community structure and diversity via the accumulation of phenolic acids. Scientific Reports, 2019, 9(1): 12499. |
10 | Liu W, Zhou B Q, Wang X, et al. Analysis of rhizosphere soil fungal community composition and diversity of Salvia miltiorrhiza based on ITS sequences. Chinese Journal of Experimental Traditional Medical Formulae, 2019, 25(9): 130-135. |
刘伟, 周冰谦, 王晓, 等. 基于ITS序列的丹参连作根际土壤真菌群落组成及多样性分析. 中国实验方剂学杂志, 2019, 25(9): 130-135. | |
11 | Xia W W, Jia Z J. Comparative analysis of soil microbial communities by pyrosequencing and DGGE. Acta Microbiologica Sinica, 2014, 54(12): 1489-1499. |
夏围围, 贾仲君. 高通量测序和DGGE分析土壤微生物群落的技术评价. 微生物学报, 2014, 54(12): 1489-1499. | |
12 | Zhu S Y, Wang Y Z, Xu X M, et al. Potential use of high-throughput sequencing of soil microbial communities for estimating the adverse effects of continuous cropping on ramie (Boehmeria nivea L. Gaud). PLoS One, 2018, 13(5): e0197095. |
13 | Sun S, Badgley B D. Changes in microbial functional genes within the soil metagenome during forest ecosystem restoration. Soil Biology and Biochemistry, 2019, 135: 163-172. |
14 | Lin W X, Ma P S, Wang F, et al. Analysis of the effects of pesticides on microbial diversity of Lycium chinense L. in Ningxia based on macrogenomics. Northern Horticulture, 2023(1): 98-105. |
林文星, 马鹏生, 王芳, 等. 基于宏基因组学研究分析农药对宁夏枸杞地微生物的影响. 北方园艺, 2023(1): 98-105. | |
15 | Hu X, Gu H, Liu J, et al. Metagenomics reveals divergent functional profiles of soil carbon and nitrogen cycling under long-term addition of chemical and organic fertilizers in the black soil region. Geoderma, 2022, 418: 115846. |
16 | Pang Z Q, Dong F, Liu Q, et al. Soil metagenomics reveals effects of continuous sugarcane cropping on the structure and functional pathway of rhizospheric microbial community. Frontiers in Microbiology, 2021, 12: 627569. |
17 | Zhao Y, Qin X, Tian X, et al. Effects of continuous cropping of Pinellia ternate (Thunb.) Breit on soil physicochemical properties, enzyme activities, microbial communities and functional genes. Chemical and Biological Technologies in Agriculture, 2021, 8(1): 43. |
18 | Zhu S X, Zhao W, Sun S X, et al. Metagenomic analysis revealed N-metabolizing microbial response of Iris tectorum to Cr stress after colonization by arbuscular mycorrhizal fungi. Ecotoxicology and Environmental Safety, 2024, 273: 116157. |
19 | Song R, Zhu W Z, Li H. Impact of wine-grape continuous cropping on soil enzyme activity and the composition and function of the soil microbial community in arid areas. Frontiers in Microbiology, 2024, 15: 1348259. |
20 | Pan X Y, Li Q, Liu S T, et al. Soil fungal community structures in aged vineyards at the eastern foot of Helan Mountain in Ningxia. Journal of Northwest A & F University (Natural Science Edition), 2022, 50(9): 101-110, 118. |
潘新宇, 李茜, 刘松涛, 等. 宁夏贺兰山东麓老龄葡萄园土壤真菌群落结构分析. 西北农林科技大学学报(自然科学版), 2022, 50(9): 101-110, 118. | |
21 | Chen S F, Zhou Y Q, Chen Y R, et al. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 2018, 34(17): 884-890. |
22 | Li D H, Liu C M, Luo R B, et al. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics, 2015, 31(10): 1674-1676. |
23 | Zhu W H, Lomsadze A, Borodovsky M. Ab initio gene identification in metagenomic sequences. Nucleic Acids Research, 2010, 38(12): e132. |
24 | Fu L M, Niu B F, Zhu Z W, et al. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics, 2012, 28(23): 3150-3152. |
25 | Buchfink B, Xie C, Huson D H. Fast and sensitive protein alignment using DIAMOND. Nature Methods, 2015, 12(1): 59-60. |
26 | Mengdes R, Garbeva P, Raaijmakers J M. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. Federation of European Microbiological Societies Microbiology Reviews, 2013, 37(5): 634-663. |
27 | Wang Y Z, Xu X M, Liu T M, et al. Analysis of bacterial and fungal communities in continuous-cropping ramie (Boehmeria nivea L. Gaud) fields in different areas in China.Scientific Reports, 2020, 10(1): 3264. |
28 | Dai Z M, Su W Q, Chen H H, et al. Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro-ecosystems across the globe. Global Change Biology, 2018, 24(8): 3452-3461. |
29 | Niu S Q, Zhao J, Fan Z J, et al. Soil bacterial community structure and functional prediction in Angelica sinensis growing area, Min County, Gansu Province. Journal of Northwest Normal University (Natural Science), 2022, 58(4): 94-102. |
牛世全, 赵进, 樊子婧, 等. 甘肃岷县当归连作种植区土壤细菌群落结构分析. 西北师范大学学报(自然科学版), 2022, 58(4): 94-102. | |
30 | Wang G H, Liu J J, Yu Z H, et al. Research progress of Acidobacteria ecology in soils. Biotechnology Bulletin, 2016, 32(2): 14-20. |
王光华, 刘俊杰, 于镇华, 等. 土壤酸杆菌门细菌生态学研究进展. 生物技术通报, 2016, 32(2): 14-20. | |
31 | Shivlata L, Satyanarayana T. Actinobacteria in agricultural and environmental sustainability//In: Singh J, Seneviratne G. Agro-environmental sustainability. Cham: Springer, 2017: 173-218. |
32 | Yue S J, Feng C E, Yang Y Y, et al. Analysis of microbial community structure and diversity in selenium-sand melon soil under different continuous cropping years.Agricultural Research in the Arid Areas, 2020, 38(1): 230-236. |
岳思君, 冯翠娥, 杨彦研, 等. 不同连作年限硒砂瓜土壤细菌群落结构特征. 干旱地区农业研究, 2020, 38(1): 230-236. | |
33 | Yang T, Adams J M, Shi Y, et al. Soil fungal diversity in natural grasslands of the Tibetan Plateau: Associations with plant diversity and productivity. New Phytologist, 2017, 215(2): 756-765. |
34 | Challacombe J F, Hesse C N, Bramer L M, et al. Genomes and secretomes of Ascomycota fungi reveal diverse functions in plant biomass decomposition and pathogenesis. BioMed Central Genomics, 2019, 20(1): 1-27. |
35 | Yang L B, Sui X, Zhu D G, et al. Study on fungal communities characteristics of different Larix gmelini forest types in cold temperate zone. Journal of Central South University of Forestry & Technology, 2017, 37(12): 76-84. |
杨立宾, 隋心, 朱道光, 等. 大兴安岭兴安落叶松林土壤真菌群落特征研究. 中南林业科技大学学报, 2017, 37(12): 76-84. | |
36 | Zhu L P, Xu F, Wang J Y, et al. Soil fungal community structure and function diversity of different land use types in the waterfront area along the Jialing river. Environmental Science, 2022, 43(12): 5808-5818. |
竹兰萍, 徐飞, 王佳颖, 等. 嘉陵江滨岸带不同土地利用类型土壤真菌群落结构与功能多样性. 环境科学, 2022, 43(12): 5808-5818. | |
37 | Zhang M, Ma M. Response of rhizosphere soil microbial community to long-term continuous cropping of Glycyrrhiza glabra. Acta Ecologica Sinica, 2022, 42(22): 9017-9025. |
张敏, 马淼. 甘草根际土壤微生物群落对长期连作的响应. 生态学报, 2022, 42(22): 9017-9025. | |
38 | Liu Z X, Liu J J, Yu Z H, et al. Long-term continuous cropping of soybean is comparable to crop rotation in mediating microbial abundance, diversity and community composition. Soil and Tillage Research, 2020, 197: 104503. |
39 | Zheng L W, Zhao Y Y, Wang Y B, et al. Soil properties and microbial diversity in the muskmelon fields after continuous cropping of different years. Microbiology China, 2022, 49(1): 101-114. |
郑立伟, 赵阳阳, 王一冰, 等. 不同连作年限甜瓜种植土壤性质和微生物多样性. 微生物学通报, 2022, 49(1): 101-114. | |
40 | Yuan J, Wen T, Zhang H, et al. Predicting disease occurrence with high accuracy based on soil macroecological patterns of Fusarium wilt. The International Society for Microbial Ecology Journal, 2020, 14(12): 2936-2950. |
41 | Tong F, Li Y, Chen L S, et al. Effect of continuous cropping on soil enzyme activities and microbial community structure in capsicum annuum soil. Acta Agriculturae Boreali-Occidentalis Sinica, 2023, 32(8): 1231-1239. |
童芳, 李屹, 陈来生, 等. 连作对设施辣椒土壤酶活性和微生物群落结构的影响. 西北农业学报, 2023, 32(8): 1231-1239. | |
42 | Li Y, Liu L Y, Jiang Y J, et al. Effect of continuous cropping of hot pepper on soil bacterial community. Acta Microbiologica Sinica, 2023, 63(1): 297-318. |
李莹, 刘兰英, 姜宇杰, 等. 辣椒连作对土壤细菌群落的影响. 微生物学报, 2023, 63(1): 297-318. | |
43 | Li J R, Chen X Z, Zhan R T, et al. Transcriptome profiling reveals metabolic alteration in Andrographis paniculata in response to continuous cropping. Industrial Crops and Products, 2019, 137: 585-596. |
44 | Zhang G Y, Lyu B B, Zhang L P, et al. Effect of long-term no-tillage with stubble on soil fertility and diversity of prokaryotic microbiome in dryland wheat soils on the Loess Plateau, China. Chinese Journal of Eco-Agriculture, 2019, 27(3): 358-368. |
张贵云, 吕贝贝, 张丽萍, 等. 黄土高原旱地麦田26年免耕覆盖对土壤肥力及原核微生物群落多样性的影响. 中国生态农业学报, 2019, 27(3): 358-368. | |
45 | Zou C J, Qi M F, Ma J, et al. Analysis of soil microbial community structure diversity in cucumber continuous cropping nutrition medium by Biolog-ECO. Scientia Agricultura Sinica, 2016, 49(5): 942-951. |
邹春娇, 齐明芳, 马建, 等. Biolog-ECO解析黄瓜连作营养基质中微生物群落结构多样性特征. 中国农业科学, 2016, 49(5): 942-951. | |
46 | Hilton S, Bennett A J, Keane G, et al. Impact of shortened crop rotation of oilseed rape on soil and rhizosphere microbial diversity in relation to yield decline.PLoS One, 2013, 8(4): e59859. |
[1] | 王宝, 谢占玲, 郭璟, 唐永鹏, 孟清, 彭清青, 杨家宝, 董德誉, 徐鸿雁, 高太侦, 张凡, 段迎珠. 真菌发酵液浸种燕麦对其抗旱性及根际真菌群落结构的影响[J]. 草业学报, 2024, 33(9): 126-139. |
[2] | 李争艳, 徐智明, 李岩, 李杨. 江淮地区苜蓿短期连作对后作高丹草生长及土壤微环境的影响[J]. 草业学报, 2024, 33(9): 155-168. |
[3] | 马远飞, 宋彦涛, 乌云娜, 方乘风. 施肥和刈割5年对呼伦贝尔草甸草原土壤微生物特征的影响[J]. 草业学报, 2024, 33(9): 242-251. |
[4] | 王峥, 常伟, 李俊诚, 苏连泰, 高鲤, 周鹏, 安渊. 紫花苜蓿还田对饲料玉米产量和氮素吸收转运的影响[J]. 草业学报, 2024, 33(8): 63-73. |
[5] | 岳海旺, 魏建伟, 王广才, 刘朋程, 陈淑萍, 卜俊周. 基于环境型鉴定技术划分生态区综合评价黄淮海青贮玉米品种[J]. 草业学报, 2024, 33(3): 120-138. |
[6] | 孟超楠, 赵玉洁, 陈佳欣, 张旖璐, 王彦佳, 冯丽荣, 孙玉刚, 郭长虹. 2株青贮玉米根际固氮菌的筛选鉴定及促生作用研究[J]. 草业学报, 2024, 33(3): 174-185. |
[7] | 李俊瑶, 蒋星驰, 胡晋瑜, 魏栋光, 赵学勇, 王少昆. 生物有机肥施加对荒漠草原植被-土壤-微生物的影响[J]. 草业学报, 2024, 33(3): 34-45. |
[8] | 王安林, 马瑞, 马彦军, 刘腾, 田永胜, 董正虎, 柴巧弟. 复合型治沙措施对土壤细菌群落结构及功能的影响[J]. 草业学报, 2024, 33(3): 46-60. |
[9] | 段鹏, 韦鎔宜, 王芳萍, 姚步青, 赵之重, 胡碧霞, 宋词, 杨萍, 王婷. 不同养分添加对黄河源区退化高寒湿地土壤微生物碳源利用的影响[J]. 草业学报, 2024, 33(2): 138-153. |
[10] | 李霄霄, 张盼, 卢园, 李婷, 赵娜, 吴佳文. 非生物逆境锻炼对玉米镉胁迫的生理响应[J]. 草业学报, 2024, 33(11): 135-148. |
[11] | 张仲鹃, 郝曦煜, 王雪, 李峰, 李文龙. 齐齐哈尔地区适宜青贮玉米品种的筛选及综合评价[J]. 草业学报, 2024, 33(11): 228-240. |
[12] | 姜瑛, 张辉红, 魏畅, 徐正阳, 赵颖, 刘芳, 李鸽子, 张雪海, 柳海涛. 外源褪黑素对干旱胁迫下玉米幼苗根系发育及生理生化特性的影响[J]. 草业学报, 2023, 32(9): 143-159. |
[13] | 蒋丛泽, 受娜, 高玮, 马仁诗, 沈禹颖, 杨宪龙. 陇东旱塬区不同青贮玉米品种生产性能和营养品质综合评价[J]. 草业学报, 2023, 32(7): 216-228. |
[14] | 李思媛, 崔雨萱, 孙宗玖, 刘慧霞, 冶华薇. 封育对蒿类荒漠草地土壤有机碳及土壤微生物生物量生态化学计量特征的影响[J]. 草业学报, 2023, 32(6): 58-70. |
[15] | 江奥, 敬路淮, 泽让东科, 田黎明. 放牧影响草地凋落物分解研究进展[J]. 草业学报, 2023, 32(4): 208-220. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||