欢迎访问《草业学报》官方网站,今天是

草业学报 ›› 2025, Vol. 34 ›› Issue (11): 136-149.DOI: 10.11686/cyxb2024480

• 研究论文 • 上一篇    

党参黄芯病菌的鉴定及绿色荧光蛋白基因转化

付瑶1,2(), 王子贤1,2, 陈泰祥3, 晋玲1,2, 马晓辉1,2, 王艳1,2()   

  1. 1.甘肃中医药大学药学院,甘肃 兰州 730000
    2.西北中藏药省部共建协同创新中心,甘肃 兰州 730000
    3.草种创新与草地农业生态系统全国重点实验室,兰州大学草地农业科技学院,甘肃 兰州 730020
  • 收稿日期:2024-12-03 修回日期:2025-03-03 出版日期:2025-11-20 发布日期:2025-10-09
  • 通讯作者: 王艳
  • 作者简介:E-mail: gswangyan101@163.com
    付瑶(2000-),女,山东青岛人,在读硕士。E-mail: a225265153@163.com
  • 基金资助:
    中药保障与创新能力提升项目(甘中医药综函〔2024〕14号);财政部和农业农村部:国家现代农业产业技术体系资助(CARS-21);甘肃省科技计划项目(23ZDFA013-1);甘肃省自然科学基金(22JR5RA458);甘肃省2023年度优秀研究生“创新之星”(2023CXZX-762);西北中藏药省部共建协同创新中心开放基金项目(Xbzzy-2022-02)

Identification and green fluorescent protein gene transformation of the causal agent of yellow-core disease of Codonopsis pilosula

Yao FU1,2(), Zi-xian WANG1,2, Tai-xiang CHEN3, Ling JIN1,2, Xiao-hui MA1,2, Yan WANG1,2()   

  1. 1.School of Pharmacy,Gansu University of Chinese Medicine,Lanzhou 730000,China
    2.Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-constructed by Gansu Province & MOE of PRC,Lanzhou 730000,China
    3.State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems,College of Pastoral Agriculture Science and Technology,Lanzhou University,Lanzhou 730020,China
  • Received:2024-12-03 Revised:2025-03-03 Online:2025-11-20 Published:2025-10-09
  • Contact: Yan WANG

摘要:

党参黄芯病降低党参的产量和质量,在明确该病病原菌分类地位的基础上,构建增强型绿色荧光蛋白(enhanced green fluorescent protein, EGFP)标记的党参黄芯病菌转化株,为研究病原菌在党参植株体内的侵染特性提供可视化跟踪手段。基于形态学和多基因位点联合的方法,明确病原菌的分类地位。采用根癌农杆菌介导法(Agrobacteriumtumefaciens-mediated transformation, ATMT),将带有潮霉素磷酸转移酶基因(hygromycin phosphotransferase, HygB)和增强型绿色荧光蛋白基因EGFP的双元载体转入党参黄芯病菌分生孢子中并筛选出遗传稳定的转化子。结果表明,党参黄芯病常年田间发病率为20%~30%。病原菌为弯镰孢菌党参变种,遗传转化共获得138株阳性转化子,转化效率约为46个转化子·10-6个孢子。随机挑选的4株阳性转化子经6次继代培养,具有稳定的潮霉素B抗性和绿色荧光表达,其中转化子EGFP7-3与EGFP7-4生物学特性及致病性和野生型党参黄芯病菌无显著差异,表明绿色荧光蛋白基因已成功转入党参黄芯病菌中,转化子EGFP7-3与EGFP7-4稳定遗传且致病力不受影响。本研究为党参黄芯病菌致病机理的研究提供了良好的材料和技术支撑。

关键词: 党参, 黄芯病, 病原鉴定, EGFP, ATMT, 基因转化

Abstract:

Yellow-core disease of Codonopsis pilosula significantly reduces its yield and quality. First, we clarified the taxonomic position of the pathogen causing the disease, and developed EGFP-labeled transformants of the causative fungus, providing a means for visual tracking of infection characteristics within the host plants. The pathogen was clarified by using both morphological and multi-gene locus analyses. ATMT was used to introduce a binary vector carrying the HygB and EGFP into the conidia of the yellow-core disease fungus. Genetically stable transformants were screened. The results indicated that the field incidence of yellow-core disease is 20%-30%. The pathogen is identified as Fusarium curvatum var. codonopsidis. Genetic transformation produced 138 positive transformants at an efficiency of approximately 46 transformants per 106 conidia. Four randomly selected positive transformants, after six subcultures, exhibited stable hygromycin B resistance and green fluorescence expression. Transformants EGFP7-3 and EGFP7-4 showed no significant differences in biological characteristics or pathogenicity compared to the wild-type strain, indicating successful and stableintegration EGFP without affecting virulence. This study provides valuable materials and technical support for investigating the pathogenesis and control of yellow-core disease in C.pilosula.

Key words: Codonopsispilosula, yellow-core disease, pathogen identification, EGFP, ATMT, gene transformation