Reference:[1]Scurlock J M, Olson R J. Estimating net primary productivity from grassland biomass dynamics measurements[J]. Global Change Biology, 2002, 8: 736-753. [2]Reeder J D, Schuman G E. Influence of livestock grazing on C sequestration in semi-arid mixed-grass and short-grass rangelands[J]. Environmental Pollution, 2002, 116: 457-463.[3]Schuman G E, Janzen H, Herrick J. Soil carbon dynamics and potential carbon sequestration by rangelands[J]. Environmental Pollution, 2002, 116: 391-396.[4]Chen X P, Shang Zh H. Progress of Carbon Cycle Research in China Grassland Ecosystem[J]. Chinese Journal of Grassland, 2011, 33(4): 99-110. [5]Han D R, Cao G M, Guo X W, et al. The potential of carbon sink in alpine meadow ecosystem on the QinghaiTibetan Plateau[J]. Acta Ecologica Sinica, 2011, 31(24): 7408-7417. [6]Zhang Y J, Yang G W, Liu N, et al. Review of grassland management practices for carbon sequestration[J]. Acta Prataculturae Sinica, 2013, 22(2): 290-299. [7]Wang S P, Wang Y F, Chen Z Z, et al. The impact of grazing on grassland pasture regeneration and underground net primary productivity[J]. Acta Agrestia Sinica, 1998, 4(10): 275-281. [8]Wang Z T,Long R J, Cao G M, et al. Soil carbon and nitrogen contents along elevation gradients in the source region of yangtze,yellow and lantsang rivers[J]. Chinese Journal of Plant Ecology, 2006, 30(3): 441-449. [9]Piao S L, Fang J Y,He J S, et al. Spatial distribution of grassland biomass in China[J]. Chinese Journal of Plant Ecology, 2004, 28(4): 491-498. [10]Zeng Y N, Feng Z D, Cao G C, et al. The soil organic carbon storage and its spatial distribution of alpine grassland in the source region of the yellow river[J]. Acta Geographica Sinica, 2004, 59(4): 497-504. [11]Gan Y M, Li Z D, Ze B, et al.The changes of grassland soil nutrition at different degradation subalpine meadow of north-west in Sichuan[J]. Acta Prataculturae Sinica, 2005, 14(2): 38-42. [12]Gan Y M, Li Z D, Wang Q, et al. Study On Grazing Degenerating Succession of Subalpine Meadow in Northwestern of Sichuan Province[J]. Acta Agrectir Sinica, 2005, 13: 48-52. [13]Ji L, Gan Y M,Luo Y J,et al. Comparison between the vegetation characteristics of alpine and subalpine meadow with different degradation degrees in North-west of Sichuan province[J]. Pratacultural Science, 2011, 28(6): 1101-1105. [14]Shi R H. Agrochemical soil analysis[M]. Beijing: Agricultural Press, 1990: 33-36. [15]Wang S Q, Zhou C H. Estimating soil carbon reservior of terrestrial ecosystem in China[J]. Geographical Research, 1999, 18(4): 349-356. [16]Cao G M, Li Y N, Zhang J X, et al. Values of carbon dioxide emission from different land-use patterns of alpine meadow[J]. Environmental Science, 2001, 22(6): 14-19. [17]Li L H. The impact of land use change on soil carbon storage grassland ecosystem[J]. Chinese Journal of Plant Ecology, 1998, 22(4): 300-302. [18]Zhang J X, Cao G M, Zhou D W, et al.The carbon storage and carbon cycle among the atmosphere, soil, vegetation and a nimal in the Kobresia humilis alpine meadow ecosystem[J]. Acta Ecologica Sinica, 2003, 23(4): 627-634. [19]Ma L, Li X B, Xie Y Z. The Processes and Functional Study of Grassland Litter Decomposition[J]. Pruataculture & Animal Husbandry, 2011, 12: 7-12. [20]Zhang F, Qi B, Wen F, et al. Changes in varying degrees alpine arid grasslands grazing analysis of carbon stocks[J]. Acta Prataculturae Sinica, 2011, 20(4): 1-18. [21]Qiao Y M,. Wang Z Q, Duan Z H. Effects of different land-use types on soil carbon and nitrogen contents in the northern region of Qinghai Lake[J]. Acta Prataculturae Sinica, 2009, 18(6): 105-112. [22]Gao K, Zhu T X, Han G D. Impact of enclosure duration on plant functional and species diversity in Inner Mongolian grassland[J]. Acta Prataculturae Sinica, 2013, 22(6):39-45. [23]Li Y Q, Zhao H L, Zhao X Y, et al. Soil respiration, carbon balance and carbon storage of sandy grassland under post-grazing natural restoration[J]. Acta Prataculturae Sinica, 2006, 15(5):25-31. [24]Lin L, Cao G M, Li Y K, et al. Effects of human activities on organic carbon storage in the Kobresia hummilis meadow ecosystem on the Tibetan Plateau[J]. Acta Ecologica Sinica, 2010, 30(15): 4012-4018. [25]Anderson D W, Coleman D C. The dynamics of organic matter in grassland soils[J]. Journal of Soil and Water Conservation, 1985, 40: 211-216. [26]McConnell S G, Quinn M L. Soil productivity of four land use systems in southeastern Montana[J]. Soil Science Society of America Journal, 1988, 52: 500-506. [27]Chen Z Z, Wang S P. China typical steppe ecosystem[M]. Beijing Science Press, 2000: 20-25, 223-227. [28]Liu N, Zhang Y J. Grazing on soil organic matter and total nitrogen in typical grasslands[J]. Pratacultural Science,2010, 27(4): 4-11. [29]Sa R L, Hou X Y, Li J X, et al. Different degrees of degraded grazing typical grassland vegetation - soil organic carbon storage system[J]. Acta Prataculturae Sinica, 2013, 22(5): 18-26. [30]Wang Q J, Li S X, Wang W Y,et al. The despondences of carbon and nitrogen reserves in plants and soils to vegetations cover change on Kobresia pygmaea meadow of Yellow River and Yangtze River source region[J]. Acta Ecologica Sinica, 2008, 28(3): 885-894. [31]Wang J M, Zhang X C. Changes of carbon storage in vegetation and soil during different successional stages of rehabilitated grassland[J]. Acta Prataculturae Sinica, 2009, 18(1): 1-8.参考文献:[1]Scurlock J M, Olson R J. Estimating net primary productivity from grassland biomass dynamics measurements[J]. Global Change Biology, 2002, 8: 736-753. [2]Reeder J D, Schuman G E. Influence of livestock grazing on C sequestration in semi-arid mixed-grass and short-grass rangelands[J]. Environmental Pollution, 2002, 116: 457-463.[3]Schuman G E, Janzen H, Herrick J. Soil carbon dynamics and potential carbon sequestration by rangelands[J]. Environmental Pollution, 2002, 116: 391-396.[4]陈晓鹏, 尚占环. 中国草地生态系统碳循环研究进展[J]. 中国草地学报, 2011, 33(4): 99-110. [5]韩道瑞, 曹广民, 郭小伟, 等. 青藏高原高寒草甸生态系统碳增汇潜力[J]. 生态学报, 2011, 31(24): 7408-7417. [6]张英俊, 杨高文, 刘楠, 等. 草原碳汇管理对策[J]. 草业学报, 2013, 22(2): 290-299. [7]汪诗平, 王艳芬, 陈佐忠, 等. 不同放牧强度对草原牧草再生性和地下净初级生产力的影响[J]. 草地学报, 1998, 4(10): 275-281. [8]王长庭, 龙瑞军, 曹广民, 等. 三江源地区主要草地类型土壤碳氮沿海拔变化特征及其影响因素[J]. 植物生态学报, 2006, 30(3): 441-449. [9]朴世龙, 方精云, 贺金生, 等. 中国草地植被生物量及其空间分布格局[J]. 植物生态学报, 2004, 28(4): 491-498. [10]曾永年, 冯兆东, 曹广超, 等. 黄河源区高寒草地土壤有机碳储量及分布特征[J]. 地理学报, 2004, 59(4): 497-504. [11]干友民, 李志丹, 泽柏, 等. 川西北亚高山草地不同退化梯度草地土壤养分变化[J]. 草业学报, 2005, 14(2): 38-42. [12]干友民, 李志丹, 王钦, 等. 川西北亚高山草甸放牧退化演替研究[J]. 草地学报, 2005, 13: 48-52. [13]纪磊, 干友民, 罗元佳, 等. 川西北不同退化程度高山草甸和亚高山草甸的植被特征[J]. 草业科学, 2011, 28(6): 1101-1105. [14]史瑞和. 土壤农化分析[M]. 北京: 农业出版社, 1990: 33-36. [15]王绍强, 周成虎. 中国陆地土壤有机碳库的估算[J]. 地理研究, 1999, 18(4): 349-356. [16]曹广民, 李英年, 张金霞, 等. 高寒草甸不同土地利用格局土壤CO2的释放量[J]. 环境科学, 2001, 22(6): 14-19. [17]李凌浩. 土地利用变化对草原生态系统土壤碳贮量的影响[J]. 植物生态学报, 1998, 22(4): 300-302. [18]张金霞, 曹广民, 周党卫, 等. 高寒矮嵩草草甸大气-土壤-植被-动物系统碳素储量及碳素循环[J]. 生态学报, 2003, 23(4): 627-634. [19]马琳, 李学斌, 谢应忠. 草地生态系统枯落物分解及功能研究[J]. 草业与畜牧, 2011, 12: 7-12. [20]张凡, 祁彪, 温飞, 等. 不同放牧程度高寒干旱草地碳储量的变化特征分析[J]. 草业学报, 2011, 20(4): 1-18. [21]乔有明, 王振群, 段中华. 青海湖北岸土地利用方式对土壤碳氮含量的影响[J]. 草业学报, 2009, 18(6): 105-112. [22]高凯, 朱铁霞, 韩国栋. 围封年限对内蒙古羊草-针茅典型草原植物功能群及其多样性的影响[J]. 草业学报, 2013,22(6); 39-45. [23]李玉强, 赵哈林, 赵学勇, 等. 不同强度放牧后自然恢复的沙质草地土壤呼吸、碳平衡与碳储量[J]. 草业学报, 2006,15(5); 25-31. [24]林丽, 曹广民, 李以康, 等. 人类活动对青藏高原高寒矮嵩草草甸碳过程的影响[J]. 生态学报, 2010, 30(15): 4012-4018. [25]Anderson D W, Coleman D C. The dynamics of organic matter in grassland soils[J]. Journal of Soil and Water Conservation, 1985, 40: 211-216. [26]McConnell S G, Quinn M L. Soil productivity of four land use systems in southeastern Montana[J]. Soil Science Society of America Journal, 1988, 52: 500-506. [27]陈佐忠, 汪诗平. 中国典型草原生态系统[M]. 北京科学出版社, 2000: 20-25, 223-227. [28]刘楠, 张英俊. 放牧对典型草原土壤有机质及全氮影响[J]. 草业科学, 2010, 27(4): 4-11. [29]萨茹拉, 侯向阳, 李金祥, 等. 不同放牧退化程度典型草原植被-土壤系统的有机碳储量[J]. 草业学报, 2013, 22(5): 18-26. [30]王启基, 李世雄, 王文颖, 等. 江河源区高山嵩草(Kobresia pygmaea)草甸植物和土壤碳、氮储量对覆被变化的响应[J]. 生态学报, 2008, 28(3): 885-894. [31]王俊明, 张兴昌. 退耕草地演替过程中的碳储量变化[J]. 草业学报, 2009, 18(1): 1-8. |