[1] Qin T C, Wu Y S, Wang H X, et al . Effect of cadmium, lead and their interactions on the physiological and ecological characteristics of root system of Brassica chinensis . Ecta Ecologica Sinica, 1998, 18(3): 320-325. [2] Du L C. Lead-tolerant ecotypes and lead-tolerance mechanism of plant. Biology Teaching, 2007, 32(2): 2-3. [3] Navari-lzzo F, Quartacci M F. Phytoremediation of metals-tolerance mechanisms against oxidative stress. Minerva Biotecnologica, 2001, 13(2): 73-83. [4] Shah K, Kumar R G, Verma S, et al . Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Science, 2001, 161(6): 1135-1144. [5] Li X, Yue H, Wang S, et al . Research of different effects on activity of plant antioxidant enzymes. China Journal of Chinese Materia Medica, 2013, 38(7): 973-978. [6] Reddy A M, Kumar S G, Jyothsnakumari G, et al . Lead induced changes in antioxidant metabolism of horsegram ( Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphere, 2005, 60(1): 97-104. [7] Xie C J, Yang J H, Zhou S B, et al . Effects on physiological characteristics of Eremochloa ophiuroides and Zoysia japonica under progressive lead stress. Acta Prataculturae Sinica, 2008, 17(4): 65-70. [8] Liu H Q, Han J C, Liu H P, et al . Influence of lead stress on the physiological and biochemical characteristics of perennial ryegrass ( Lolium perenne ) seedlings. Acta Prataculturae Sinica, 2012, 21(6): 57-63. [9] Ji Y, Zhang X Q, Peng Y, et al . Effects of drought stress on lipid peroxidation, osmotic adjustment and activities of protective enzymes in the roots and leaves of orchardgrass. Acta Prataculturae Sinica, 2014, 23(3): 144-151. [10] Qian H Y, Wang X X, Jiang P L, et al . The endurance and the restorative effect of coatinuous stubbles ryegrass on Cu and Zn pollution in soil. Acta Agriculturae Universitatis Jiangxiensis, 2004, 26(5): 801-804. [11] Tamas J, Kovacs A. Vegetation pattern and heavy metal accumulation at a mine tailing at Gyongyosoroszi, Hungary. Zeitschrift fur Naturforschung Section C, 2005, 60(3-4): 362-367. [12] Li H S. Plant Physiology and Biochemistry Experimental Principles and Techniques[M]. Beijing: Higher Education Press, 2002: 258-261. [13] Dhindsa R S, Dhindsa P P, Thorpe T A. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 1981, 32(1): 93-101. [14] Liu Z Q, Zhang S C. Resistance Physiology of Plant[M]. Beijing: China Agriculture Press, 1994: 370-372. [15] Cao Y, Zhang Z W, Xue L W, et al . Lack of Salicylic acid in Arabidopsis protects plants against moderate salt stress. Zeitschrift fur Naturforschung Section C, 2009, 64(3-4): 231. [16] Chamberlain A C. Fallout of lead and uptake by crops. Atmospheric Environment, 1983, 17: 693-706. [17] Baker A J M, Reeves R D, Hajar A S M. Heavy metal accumulation and tolerance in British populations of the metal lophyte Thlaspicaerulescens J&C. Presl (Brassicaceae). New Phytologist, 1994, 127: 61-68. [18] Li Y, Liu G B, Gao H W, et al . A comprehensive evaluation of salt-tolerance and the physiological response of Medicago sativa at the seedling stage. Acta Prataculturae Sinica, 2010, 19(4): 79-86. [19] Li X, Wu Y J, Sun L X. Growth and physiological responses of three warm-season turfgrasses to lead stress. Acta Prataculturae Sinica, 2014, 23(4): 171-180. [20] Zhang C X, Chen W F, Pei H C. Responses of Kentucky bluegrass to lead stress and accumulation characteristics of lead. Chinese Journal of Grassland, 2013, 35(1): 96-101. [21] Zhao X L, Liu X. Differences in plant growth, Cd and nutrient uptake, Cd translocation between two tobacco cultivars under Cd stress. Journal of Soil and Water Conservation, 2009, 23(1): 117-121. [22] Wang S L, Liao W B, Yu F Q. Hyperaccumulation of lead, zinc, and cadmium in plants growing on a lead/zinc outcrop in Yunnan Province, China. Environmental Geology, 2009, 58(3): 471-476. [1] 秦天才, 吴玉树, 王焕校, 等. 镉、铅及其相互作用对小白菜根系生理生态效应的研究. 生态学报, 1998, 18(3): 320-325. [2] 杜连彩. 植物耐铅生态型及对铅胁迫的耐性机理. 生物学教学, 2007, 32(2): 2-3. [5] 李璇, 岳红, 王升, 等. 影响植物抗氧化酶活性的因素及其研究热点和现状. 中国中药杂志, 2013, 38(7): 973-978. [7] 谢传俊, 杨集辉, 周守标, 等. 铅递进胁迫对假俭草和结缕草生理特性的影响. 草业学报, 2008, 17(4): 65-70. [8] 刘慧芹, 韩巨才, 刘慧平, 等. 铅梯度胁迫对多年生黑麦草幼苗生理生活特性影响. 草业学报, 2012, 21(6): 57-63. [9] 季杨, 张新全, 彭燕, 等. 干旱胁迫对鸭茅根、叶保护酶活性、渗透物质含量及膜质过氧化作用的影响. 草业学报, 2014, 23(3): 144-151. [10] 钱海燕, 王兴祥, 蒋佩兰, 等. 黑麦草连茬对铜、锌污染土壤的耐性及其修复作用. 江西农业大学学报, 2004, 26(5): 801-804. [12] 李合生. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社, 2002: 258-261. [14] 刘祖祺, 张石城. 植物抗性生理学[M]. 北京: 中国农业出版社, 1994: 370-372. [18] 李源, 刘贵波, 高洪文, 等. 紫花苜蓿种质耐盐性综合评价及盐胁迫下的生理反应. 草业学报, 2010, 19(4): 79-86. [19] 李西, 吴亚娇, 孙凌霞. 铅胁迫对三种暖季型草坪草生长和生理特性的影响. 草业学报, 2014, 23(4): 171-180. [20] 张呈祥, 陈为峰, 裴洪翠. 草地早熟禾对铅的胁迫反应及积累特性. 中国草地学报, 2013, 35(1): 96-101. [21] 赵秀兰,刘晓. 同品种烟草生长和镉及营养元素吸收对镉胁迫响应的差异.水土保持学报, 2009, 23(1): 117-121. |