[1] Jia W, Zhang J.Stomatal movements and long-distance signaling in plants. Plant Signaling and Behavior, 2008, 3: 772-777. [2] Li L H, Li S Q, Zai J H, et al . Review of the relationship between wheat roots and water stress. Acta Botanica Boreali-occidentalia Sinica, 2001, 21(1): 1-7. [3] Wei X, Wang Z Q, Zhang G Z, et al . Physiological and biochemical responses of different order roots in Fraxinus mandshurica seedlings to drought stress. Sciertia Silvea Sinicae, 2009, 45(6): 16-21. [4] Liu J Q, Qiu M X, Pu J C, et al . The typicai extreme xerophyte—— Reaumuria soongorica in the desert of China. Journal of Integrative Plant Biology, 1982, 24(5): 485-488. [5] Ma M H, Kong L S. The bioecological characteristics of Reaumuria soongorica on the border of oasis at Hutubi, Xinjiang. Acta Phytoecologica Sinica, 1998, 22(3): 237-244. [6] Huang P Y, Nie X P. Study on the habitat of Reaumuria soongorica community in Zhungger Basin. Journal of Xinjiang University(Natural Science Edition), 1988, 5(3): 66-71. [7] Zeng Y J, Wang Y R, Bao P. Study on the effects of soil temperature, soil moisture content, sowing depth, and sand cover on seed germination and seedling growth of Reaumuria soongorica and Zygophyllum xanthoxylum . Acta Pratacultural Science, 2005, 14(5): 24-31. [8] Chong P F,Su S P, Li Y. Comprehensive evaluation of drought resistance of Reaumuria soongorica from four geographical populations. Acta Prataculturae Sinica, 2011, 20(5): 26-33. [9] Li C Z, Zuo L P, Li Y. Physiological responses in leaves of Reaumuria soongorica from different altitudes under osmotic stress. Acta Prataculturae Sinica, 2013, 22(1): 176-182. [10] Jia R L, Zhou H Y, Tan H J. Preliminary studies on diurnal variances of physio-ecological characteristics of photosynthesis of two extreme xerophytes—— Reaumuria soongorica and salsola passerina. Journal of Desert Research, 2006, 26(4): 631-636. [11] Feng L L, Tang H, Li Y. Analysis of genetic diversity in Reaumuria soongorica populations in Gansu using ISSR markers. Acta Prataculturae Sinica, 2011, 20(1): 125-130. [12] Liu Y B, Zhang T G, Li X R. Proetctive mechanism of desiccation tolernance in Reaumuria soongorica : leaf abscission and sucrose accumulation in the stem. Science in China (Series C: Life Sciences), 2006, 36(4): 328-333. [13] Shan L S, Li Y, Dong Q L. Ecological adaptation of Reaumuria soongorica root system architecture to arid environment. Journal of Desert Research, 2012, 32(5): 1283-1290. [14] Chong P F, Su S P, Li Y. Physiological responses to PEG stress of Reaumuria soongorica seedlings from different geographical origins. Acta Prataculturae Sinica, 2013, 22(1): 183-192. [15] Zhao S J, Shi G A, Dong X C. Plant Physiology Experimental Direction[M]. Beijing: Chinese Agricultural Science and Technology Press, 2002: 45-48. [16] Li H S. Plants Physiology and Biochemistry Experimental Theory and Technology[M]. Beijing: Higher Education Press, 2001: 51-54. [17] Hao Z B, Cang J, Xu Z. Plant Physiology Experiment[M]. Harbin: Harbin University Press, 2004: 101-108. [18] Wang X K, Zhang W H, Hao Z B. The Principle and Technology of Plant Physiology and Biochemistry[M]. Beijing: Higher Education Press, 2006: 20. [19] Bai Z L. The correlate degree of grey sequences. Systems Fngineering, 1993, 32:119-122. [20] Wang W, Jiang W L, Xie Z K. Study on soil water in rhizosphere and root system distribution of Nitraria tangutorum on loess plateau. Acta Prataculturae Sinica, 2013, 22(1): 22-28. [21] Shan C J, Xu X J, Han Z J. Effect of water stress on the growth characteristics of luomai 9133 seedling. Journal of Henan Institute of Science and Technology (Natural Sciences Edition), 2006, 15(4): 129-132. [22] Qiu Z J, Li Y, Chong P F. Effects of PEG stress on physiological characteristics of Calligonum mongolicum in different geographical provenance. Acta Prataculturae Sinica, 2011, 31(5): 1231-1237. [23] Wang R, Sun G Y. Effects of soil drought on trigonelline content and capacity of osmotic adjustment in leaves of two soybean varieties. Journal of Desert Research, 2010, 30(3): 552-555. [24] Li D Q, Zou Q, Cheng B H. Osmotic adjustment and osmotica of wheat cultivars with different drought resistance under soil drought. Plant Physiology Journal, 1992, 18(1): 37-44. [25] Hu C W, Zhang X K, Zou X L. Root structure and drought tolerance of Rapeseed under PEG imposed drought. Chinese Journal of Oil Crop Sciences, 2013, 35(1): 48-53. [2] 李鲁华, 李世清, 翟军海, 等. 小麦根系与土壤水分胁迫关系的研究进展. 西北植物学报, 2001, 21(1): 1-7. [3] 卫星, 王政权, 张国珍, 等. 水曲柳苗木不同根序对干旱胁迫的生理生化反应. 林业科学, 2009, 45(6): 16-21. [4] 刘家琼, 邱明新, 蒲锦春, 等. 我国典型超旱生植物——红砂. 植物学报, 1982, 24(5): 485-488. [5] 马茂华, 孔令韶. 新疆呼图壁绿洲外缘的琵琶柴生物生态学特性研究. 植物生态学报, 1998, 22(3): 237-244. [6] 黄培祐, 聂湘萍. 准噶尔盆地中部琵琶柴群落的生境研究. 新疆大学学报, 1988, 5(3): 66-71. [7] 曾彦军, 王彦荣, 保平, 等. 几种生态因子对红砂和霸王种子萌发与幼苗生长的影响. 草业学报, 2005, 14(5): 24-31. [8] 种培芳, 苏世平, 李毅. 4个地理种群红砂的抗旱性综合评价. 草业学报, 2011, 20(5): 26-33. [9] 李朝周, 左丽萍, 李毅, 等. 两个海拔分布下红砂叶片对渗透胁迫的生理响应. 草业学报, 2013, 22(1): 176-182. [10] 贾荣亮, 周海燕, 谭会娟, 等. 超旱生植物红砂与珍珠光合生理生态日变化特征初探. 中国沙漠, 2006, 26(4): 631-636. [11] 冯亮亮, 唐红, 李毅, 等. 甘肃红砂不同种群遗传多样性的ISSR分析. 草业学报, 2011, 20(1): 125-130. [12] 刘玉冰, 张腾国, 李新荣, 等. 红砂忍耐极度干旱的保护机制: 叶片脱落和茎中蔗糖累积. 中国科学(C辑生命科学), 2006, 36(4): 328-333. [13] 单立山, 李毅, 董秋莲, 等. 红砂根系构型对干旱的生态适应. 中国沙漠, 2012, 32(5): 1283-1290. [14] 种培芳, 苏世平, 李毅, 等. 不同地理种源红砂幼苗对PEG胁迫的生理响应. 草业学报, 2013, 22(1): 183-192. [15] 赵世杰, 史国安, 董新纯. 植物生理实验指导[M]. 北京: 中国农业科学技术出版社, 2002: 45-48. [16] 李合生. 植物生理生物实验理论与技术[M]. 北京: 高等教育出版社, 2001: 51-54. [17] 郝再彬, 苍晶, 徐仲. 植物生理实验[M]. 哈尔滨: 哈尔滨大学出版社, 2004: 101-108. [18] 王学奎, 章文华, 郝再彬. 植物生理生化原理与技术[M]. 北京: 高等教育出版社, 2006: 20. [19] 白振兰. 灰色关联分析研究综述. 灰色系统理论与实践, 1993, 32: 119-122. [20] 王文, 蒋文兰, 谢忠奎, 等. 黄土丘陵地区唐古特白刺根际土壤水分与根系分布研究. 草业学报, 2013, 22(1): 22-28. [21] 单长卷, 徐新娟, 韩占江. 土壤干旱对洛麦 9133幼苗根系生理特性的影响. 西北农业学报, 2006, 15(4): 129-132. [22] 邱真静, 李毅, 种培芳, 等. 基于PEG胁迫响应的不同地理种源沙拐枣抗旱性评价. 中国沙漠, 2011, 31(5): 1231-1237. [23] 王蕊, 孙广玉. 干旱对大豆叶片葫芦巴碱含量和渗透调节的影响. 中国沙漠, 2010, 30(3): 552-555. [24] 李德全, 邹琦, 程炳蒿. 土壤干旱下不同抗旱性小麦品种的渗透调节和渗透调节物质. 植物生理学报, 1992, 18(1): 37-44. [25] 胡承伟, 张学昆, 邹锡玲, 等. PEG模拟干旱胁迫下甘蓝型油菜的根系特性与抗旱性. 中国油料作物学报, 2013, 35(1): 48-53. |