[1] Cleland R E, Melis A, Neale P J. Mechanism of photoinhibition: photochemical reaction center inactivation in photosystem Ⅱ of chloroplasts. Photosynthesis Research, 1995, 9: 79-88. [2] Li X G, Meng Q W, Zhao S J. Photoinhibition and photoprotection mechanisms in Ginkgo biloba leaves under strong light stress. Scientia Silvae Sinicae, 2004, 40(3): 56-59. [3] Fini A, Guidi L, Ferrini F, et al . Drought stress has contrasting effects on antioxidant enzymes activity and phenylpropanoid biosynthesis in Fraxinus ornus leaves: An excess light stress affair. Journal of Plant Physiology, 2012, 169: 929-939. [4] Wang P R, Zhang F T, Gao J X, et al . An overview of chlorophyll biosynthesis in higher plants. Acta Botanica Boreail-Occidentalia Sinica, 2009, 29(3): 629-636. [5] Jia X J, Ran H C, Zeng S H, et al . Study on leaf anatomical structure of Chlorophytum capense var. medio-pictum . Journal of Sichuan Agricultural University, 2011, 29(2):199-202. [6] Jia X J, Dong L H, Ding C B, et al . Effects of drought stress on reactive oxygen species and scavenging system in Chlorophytum capense Var. Acta Prataculturae Sinica, 2013, 22(5): 248-255. [7] Lichtenthaler H K, Wellburn A R. Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 1983, 603: 591-592. [8] Nilkens M, Kress E, Lambrev P, et al . Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis . Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2010, 1797: 466-475. [9] Shabala S, Cuin T A. Plant Salt Tolerance: Methods and Protocols[M]. New York: Humana Press, 2012. [10] Alboresia A, Gerottob C, Giorgio M G. Physcomitrella patens mutants affected on heat dissipation clarify the evolution of photoprotection mechanisms upon land colonization. PNAS, 2010, 107(24): 11128-11133. [11] Lu C M, Zhang Q D, Kuang T Y, et al . The effects of water stress on photosystem Ⅱ in wheat. Acta Botanica Sinica, 1994, 36(2): 93-98. [12] Chen D Y, Liu C Y, Yuan Y, et al . Effects of temperature and light treatments on PSⅡ photochemical activity in‘roufurong’tree peony teaves. Acta Horticulturae Sinica, 2011, 38(10): 1939-1946. [13] Hartley I P, Armstrong A F, Murthyw R, et al . The dependence of respiration on photosynthetic substrate supply and temperature: Integrating leaf soil and ecosystem measurements. Global Change Biology, 2006, 12: 1954-1968. [14] Qiu C H. Study of Mechanism of Strong Light Induced Photodamage of Photosynthetic Apparatus in Satsuma mandarin ( Citrus unshiu Marc.) at High Temperature[D]. Hangzhou: Zhejiang University, 2011. [15] Ivanov A G, Rosso D, Savitch L V, et al . Implications of alternative electron sinks in increased resistance of PSⅡ and PSI photochemistry to high light stress in cold-acclimated Arabidopsis thaliana . Photosynthesis Research, 2012, 113: 191-206. [16] Li R, Wen T, Tang Y P, et al . Effect of shading on photosynthetic and chlorophyll fluorescence characteristics of soybean. Acta Prataculturae Sinica, 2014, 23(6): 198-206. [17] Krause G H, Weis E. Chlorophyll fluorescence and photosynthesis. Annual Review Plant Physiology and Plant, 1991, 42: 313-349. [18] Xu D Q, Wu S. Three phases of dark-recovery course from photoinhibition resolved by the chlorophyll fluorescence analysis in soybean leaves under field conditions. Photosynthetica, 1996, 32: 417-423. [19] Zhou C F, Zheng G S, Zhang Y X, et al . Strong light stress on peony leaf antioxidant system. Jiangsu Agricultural Sciences, 2011, 39(3): 232-233. [20] Li X, Feng W, Zeng X C. Advances in chlorophyll fluorescence analysis and its uses. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(10): 2186-2196. [21] Yang G D, Zhu Z J, Ji Y M. Effect of light intensity and magnesium deficiency on chlorophyll fluorescence and active oxygen in cucumber leaves. Plant Nutrition and Fertilizer Science, 2002, 8(1): 115-118. [2] 李新国, 孟庆伟, 赵世杰. 强光胁迫下银杏叶片的光抑制及其防御机制.林业科学, 2004, 40(3): 56-59. [4] 王平荣, 张帆涛, 高家旭, 等. 高等植物叶绿素生物合成的研究进展. 西北植物学报, 2009, 29(3): 629-636. [5] 贾学静, 冉何陈, 曾顺华, 等. 园艺观赏植物金心吊兰的叶片解剖结构.四川农业大学学报, 2011, 29(2): 199-202. [6] 贾学静, 董立花, 丁春邦, 等. 干旱胁迫对金心吊兰叶片活性氧及其清除系统的影响. 草业学报, 2013, 22(5): 248-255. [11] 卢从明, 张其德, 匡廷云, 等. 水分胁迫对小麦光系统Ⅱ的影响. 植物学报, 1994, 36(2): 93-98. [12] 陈大印, 刘春英, 袁野, 等. 不同光强与温度处理对“肉芙蓉”牡丹叶片PSⅡ 光化学活性的影响. 园艺学报, 2011, 38(10): 1939-1946. [14] 邱翠花. 高温强光诱导的温州蜜柑光合机构光破坏机理研究[D]. 杭州: 浙江大学, 2011. [16] 李瑞, 文涛, 唐艳萍, 等. 遮阴对大豆幼苗光合和荧光特性的影响. 草业学报, 2014, 23(6): 198-206. [19] 周传凤, 郑国生, 张玉喜, 等. 强光胁迫对牡丹叶片抗氧化系统的影响. 江苏农业科学, 2011, 39(3): 232-233. [20] 李晓, 冯伟, 曾晓春. 叶绿素荧光分析技术及应用进展. 西北植物学报, 2006, 26(10): 2186-2196. [21] 杨广东, 朱祝军, 计玉妹. 不同光强和缺镁胁迫对黄瓜叶片叶绿素荧光特性和活性氧产生的影响.植物营养与肥料学报, 2002, 8(1): 115-118. |