Acta Prataculturae Sinica ›› 2015, Vol. 24 ›› Issue (12): 220-236.DOI: 10.11686/cyxb2015233
• Orignal Article • Previous Articles Next Articles
ZHANG Jin-Lin1, *, LI Hui-Ru1, GUO Shu-Yuan1, WANG Suo-Min1, SHI Hua-Zhong2, HAN Qing-Qing1, BAO Ai-Ke1, MA Qing1
Received:
2015-05-07
Online:
2015-12-20
Published:
2015-12-20
ZHANG Jin-Lin, LI Hui-Ru, GUO Shu-Yuan, WANG Suo-Min, SHI Hua-Zhong, HAN Qing-Qing, BAO Ai-Ke, MA Qing. Research advances in higher plant adaptation to salt stress[J]. Acta Prataculturae Sinica, 2015, 24(12): 220-236.
[1] Flowers T J. Improving crop salt tolerance. Journal of Experimental Botany, 2004, 55: 307-319. [2] Kronzucker H J, Coskun D, Schulze L M, et al . Sodium as nutrient and toxicant. Plant and Soil, 2013, 369: 1-23. [3] Janz D, Polle A. Harnessing salt for woody biomass production. Tree Physiology, 2012, 32: 1-3. [4] Zhang J L, Flowers T J, Wang S M. Mechanisms of sodium uptake by roots of higher plants. Plant and Soil, 2010, 326: 45-60. [5] Zhao K F, Li F Z, Fan S J, et al . Halophytes in China. Chinese Bulletin of Botany, 1999, 16(3): 201-207. [6] Zhao K F. Plants adapt to salt adversity. Bulletin of Biology, 2002, 37(6): 7-10. [7] Zhang J L, Shi H Z. Physiological and molecular mechanisms of plant salt tolerance. Photosynthesis Research, 2013, 115: 1-22. [8] Munns R, Tester M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008, 59: 651-681. [9] Zhu J K. Plant salt tolerance. Trends in Plant Science, 2001, 6: 66-71. [10] Kronzucker H J, Britto D T. Sodium transport in plants: a critical review. New Phytologist, 2011, 189: 54-81. [11] Gorai M, El A W, Yang X, et al .Toward understanding the ecological role of mucilage in seed germination of a desert shrub Henophyton deserti : interactive effects of temperature, salinity and osmotic stress. Plant and Soil, 2014, 374: 727-738. [12] Wei Y, Dong M, Huang Z Y, et al . Factors influencingseed germination of Salsola affinis (Chenopodiaceae), a dominant annual halophyte inhabiting the deserts of Xinjiang. Flora of China, 2008, 203: 134-140. [13] Li Y, Shen Y Y, Yan S G. Comparative studies of effect of NaCl stress on the seed germination of 5 forage species. Pratacultural Science, 1997, 14(2): 50-53. [14] Liang Y C. Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant and Soil, 1999, 209: 217-224. [15] Trono D, Flagella Z, Laus M N, et al . The uncoupling protein and the potassium channel are activated by hyperosmotic stress in mitochondria from durum wheat seedlings. Plant Cell and Environment, 2004, 27: 437-448. [16] Becker D, Hoth S, Ache P, et al . Regulation of the ABA-sensitive Arabidopsis potassium channel gene GORK in response to water stress. Febs Letters, 2003, 554: 119-126. [17] Ottow E A, Brinker M, Teichmann T, et al . Populus euphratica displays apoplastic sodium accumulation, osmotic adjustment by decreases in calcium and soluble carbohydrates, and develops leaf succulence under salt stress. Plant Physiology, 2005, 139: 1762-1772. [18] Song J, Ding X D, Feng G, et al . Nutritional and osmotic roles of nitrate in a euhalophyte and a xerophyte in saline conditions. New Phytologist, 2006, 171: 357-366. [19] Liu J, Cai H, Liu Y, et al . A study on physiological characteristics and cmparison of salt resistance of two Medicago sativa at the seeding stage. Acta Prataculturae Sinica, 2013, 22(2): 250-256. [20] Jarunee J, Kenjiusui, Hiroshi M. Differences in physiological responses to NaCl between salt-tolerant Sesbania rostrata Brem.and Obem.And non-tolerant Phaseolus vulgaris L. Weed Biology and Management, 2003, 3: 21-27. [21] Makela P, Karkkainen J, Somersalo S. Effect of glycinebetaine on chloroplast ultrastructure, chlorophyll and protein content, and RuBPCO activities in tomato grown under drought or salinity. Biologia Plantarum, 2000, 43: 471-475. [22] Leshem Y, Melamed B N, Cagnac O, et al . Suppression of Arabidopsis vesicle-SNARE expression inhibited fusion of H 2 O 2 containing vesicles with tonoplast and increased salt tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103: 18008-18013. [23] Flowers T J, Colmer T D. Salinity tolerance in halophytes. New Phytologist, 2008, 179: 945-963. [24] Shabala S, Bose J, Hedrich R. Salt bladders: do they matter. Trends in Plant Science, 2014, 19(11): 687-691. [25] Wang C M, Zhang J L, Liu X S, et al . Puccinellia tenuiflora maintains a low Na + level under salinity by limiting unidirectional Na + influx resulting in a high selectivity for K + over Na + . Plant, Cell and Environment, 2009, 32: 486-496. [26] Ueda A, Yamamoto-Yamane Y, Takabe T. Salt stress enhances proline utilization in the apical region of barley roots. Biochemical and Biophysical Research Communications, 2007, 355: 61-66. [27] Wang C Q, Zhao J Q, Chen M, et al . Identification of betacyanin and effects of environmental factors on its accumulation in halophyte Suaeda salsa . Journal of Plant Physiology and Molecular Biology, 2006, 32(2): 195-201. [28] Md A H, Mst N A B, Yoshimasa N, et al . Proline and glycinebetaine enhance antioxidant defense and methylglyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cells. Journal of Plant Physiology, 2008, 165: 813-824. [29] Incharoensakd A, Takabe T, A kazawa T. Effect of bteaine on enzyme activity and subunit internation of ribulose-1,5 -bisphosphate carboxylase/oxygenas from Aphnothece halophytica . Plant Physiology, 1986, 81: 1044-1049. [30] Dubey R S, Singh A K. Salinity induces accumulation of soluble sugars and alters the activity of sugar metabolising enzymes in rice plants. Biologia Plantarum, 1999, 42: 233-239. [31] Shabala S, Shabala L. Ion transport and osmotic adjustment in plants and bacteria. Biomolecular Concepts, 2011, 2: 407-419. [32] Demidchik V, Cuin T A, Svistunenko D, et al . Arabidopsis root K + -efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. Journal of Cell Science, 2010, 123: 1468-1479. [33] Teaklea N L, Bazihizina N, Shabala S, et al . Differential tolerance to combined salinity and O 2 deficiency in the halophytic grasses Puccinellia ciliata and Thinopyrum ponticum : The importance of K + retention in roots. Environmental and Experimental Botany, 2013, 87: 69-78. [34] Wang S M, Zhang J L, Flowers T J. Low-affinity Na + uptake in the halophyte Suaeda maritima . Plant Physiology, 2007, 145(2): 559-571. [35] Cuin T A, Bose J, Stefano G, et al . Assessing the role of root plasma membrane and tonoplast Na + /H + exchangers in salinity tolerance in wheat: in planta quantification methods. Plant, Cell and Environment, 2009, 34: 947-961. [36] Schmidt U G, Endler A, Schelbert S, et al . Novel tonoplast transporters identified using a proteomic approach with vacuoles isolated from cauliflower buds. Plant Physiology, 2007, 145: 216-229. [37] Wu G Q, Xi J J, Wang Q, et al . The ZxNHX gene encoding tonoplast Na + /H + antiporter from the xerophyte Zygophyllum xanthoxylum plays important roles in response to salt and drought. Journal of Plant Physiology, 2011, 168: 758-767. [38] Ma Q, Yue L J, Zhang J L, et al . Sodium chloride improves photosynthesis and water status in the succulent xerophyte Zygophyllum xanthoxylum . Tree Physiology, 2012, 32(1): 4-13. [39] Yue L J, Li S X, Ma Q, et al . NaCl stimulates growth and alleviates water stress in the xerophyte Zygophyllum xanthoxylum . Journal of Arid Environments, 2012, 87: 153-160. [40] Wang S M, Zhu X Y, Shu X X. Studies on the characteristics of ion absorption anddistribution in Puccinellia tenuiflora . Acta Prataculturae Sinica, 1994, 3(1): 39-43. [41] Guo Q, Meng L, Mao P C, et al . Salt tolerance in two tall wheatgrass species is associated with selective capacity for K + over Na + . Acta Physiologiae Plantarum, 2014, 37:1708. [42] Zhang J L, Flowers T J, Wang S M. Differentiation of low-affinity Na + uptake pathways and kinetics of the effects of K + on Na + uptake in the halophyte Suaeda maritime . Plant and Soil, 2013, 368(1-2): 629-640. [43] Zhu Z J, Wei G Q, Li J, et al . Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber ( Cucumis sativus L.). Plant Science, 2004, 167: 527-533. [44] Liang Y C, Zhang W H, Chen Q, et al . Effects of silicon on H + -ATPase and H + -PPase activity, fatty acid composition and fluidity of tonoplast vesicles from roots of salt-stressed barley ( Hordeum vulgare L.). Environmental and Experimental Botany, 2005, 53: 29-37. [45] Gong H J, Randall D P, Flowers T J. Silicon deposition in the root reduces sodium uptake in rice ( Oryza sativa L.) seedlings by reducing bypass flow. Plant Cell and Environment, 2006, 29: 1970-1979. [46] Ma J F, Yamaji N, Mitani N, et al . An efflux transporter of silicon in rice. Nature, 2007, 448: 209-212. [47] Wang X S, Han J G. Effects of NaCl and silicon on ion distribution in the roots, shoots and leaves of two alfalfa cultivars with different salt tolerance. Soil Science and Plant Nutrition, 2007, 53: 278-285. [48] Tuna A L, Kaya C, Higgs D, et al . Silicon improves salinity tolerance in wheat plants. Environmental and Experimental Botany, 2008, 62: 10-16. [49] Chai Q, Shao X, Zhang J. Silicon effects on Poa pratensis responses to salinity. HortScience, 2010, 45: 1876-1881. [50] Bose J, Rodrigo-Moreno A, Shabala S. ROS homeostasis in halophytes in the context of salinity stress tolerance. Journal of Experimental Botany, 2014, 65(5): 1241-1257. [51] Guan B, Yv J B, Lu Z H, et al .Effects of water-salt stresses on seeding growth and activities of antioxidative enzyme of Suaeda salsa in coastal wetlands of the yellow river delta. Environmental Science, 2011, 32(8): 2422-2429. [52] Lu Y, Lei J Q, Zeng F J, et al . Effects of salt treatments on the growth and ecophysiological characteristies. Acta Prataculturae Sinica, 2014, 23(3): 152-159. [53] Xue X D, Dong X Y, Duan Y X, et al . A comparison of salt resistance of three kinds of Zoysia at different salt concentrations. Acta Prataculturae Sinica, 2013, 22(6): 315-320. [54] Ahmed I M, Nadira U A, Bibi N, et al . Secondary metabolism and antioxidants are involved in the tolerance to drought and salinity, separately and combined, in Tibetan wild barley. Environmental and Experimental Botany, 2015, 111: 1-12. [55] Gao H J, Yang H Y, Bai J P, et al . Ultrastructural and physiological responses of potato ( Solanum tuberosum L.) plantlets to gradient saline stress. Frontiers in Plant Science, 2014, 5: 787. [56] Talke I N, Blaudez D, Maathuis F J M, et al . CNGCs: prime targets of plant cyclic nucleotide signalling. Trends in Plant Science, 2003, 8: 286-293. [57] Amtmann A, Sanders D. Mechanism of Na + uptake by plant cells. Advances in Botanical Research, 1999, 29: 75-112. [58] Tyerman S D, Skerrett I M. Root ion channels and salinity. Scientia Horticulturae, 1999, 78: 175-235. [59] Zhang H F, Wang S M. Advances in study of Na + uptake and transport in higher plants and Na + homeostasis in the cell. Chinese Bulletin of Botany, 2007, 24(5): 561-571. [60] Amtmann A, Fischer M, Marsh E L, et al . The wheat cDNA LCT1 generates hypersensitivity to sodium in a salt-sensitive yeast strain. Plant Physiology, 2001, 126: 1061-1071. [61] Kronzucker H J, Szczerba M W, Schulze L M, et al . Non-reciprocal interactions between K + and Na + ions in barley ( Hordeum vulgare L.). Journal of Experimental Botany, 2008, 59: 2793-2801. [62] Deinlein U, Stephan A B, Horie T, et al . Plant salt-tolerance mechanisms. Trends in Plant Science, 2014, 19(6): 371-379. [63] Zamani B M, Ebrahimie E, Niazi A. In silico analysis of high affinity potassium transporter (HKT) isoforms in different plants. Aquatic Biosystems, 2014, 10: 9. [64] Wang Q, Guan C, Wang P, et al . AtHKT 1;1 and AtHAK 5 mediate low-affinity Na + uptake in Arabidopsis thaliana under mild salt stress. Plant Growth Regulation, 2015, 75(3): 615-623. [65] Ren Z H, Gao J P, Li L G, et al .A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics, 2005, 37: 1141-1146. [66] Laurie S, Feeney K A, Maathuis F J M, et al . A role for HKT 1 in sodium uptake by wheat roots. Plant Journal, 2002, 32: 139-149. [67] Kader M A, Seidel T, Golldack D, et al . Expressions of OsHKT 1, OsHKT 2, and OsVHA are differentially regulated under NaCl stress in salt-sensitive and salt-tolerant rice ( Oryza sativa L.) cultivars. Journal of Experimental Botany, 2006, 57(15): 4257-4268. [68] Shao Q, Zhao C, Han N, et al . Cloning and expression pattern of SsHKT 1 encoding a putative cation transporter from halophyte Suaeda salsa . DNA sequence, 2008, 19(2): 106-114. [69] Senn M E, Rubio F, Banuelos M A, et al . Comparative functional features of plant potassium HvHAK 1 and HvHAK 2 transporters. Journal of Biological Chemistry, 2001, 30: 44563-44569. [70] Fulgenzi F R, Peralta M L, Mangano S, et al . The ionic environment controls the contribution of the barley HvHAK 1 transporter to potassium acquisition. Plant Physiology, 2008, 147: 252-262. [71] Carden D E, Walker D J, Flowers T J, et al . Single-cell measurements of the contributions of cytosolic Na + and K + to salt tolerance. Plant Physiology, 2003, 131: 676-683. [72] Takahashi R, Nishio T, Ichizen N, et al . Cloning and functional analysis of the K + transporter PhaHAK2 from salt-sensitive and salt-tolerant reed plants. Biotechnol Letters, 2007, 29: 501-506. [73] Golldack D, Quigley F, Michalowski C B, et al .Salinity stress-tolerant and -sensitive rice ( Oryza sativa L.) regulate AKT1-type potassium channel transcripts differently. Plant Molecular Biology, 2003, 51: 71-81. [74] Kim E J, Kwak J M, Uozumi N, et al . AtKUP 1: An Arabidopsis gene encoding high-affinity potassium transport activity. Plant Cell, 1998, 10: 51-62. [75] Fu H H, Luan S. AtKUP 1: a dual-affinity K + transporter from Arabidopsis . Plant Cell, 1998, 10: 63-73. [76] Zhang J L. Low-Affinity Na + Uptake and Accumulation in the Halophyte Suaeda maritina[D]. Lanzhou: Lanzhou University, 2008. [77] Shi H, Kim Y, Guo Y, et al . The Arabidopsis SOS 5 locus encodes a putative cell surface adhesion protein and is required for normal cell expansion. Plant Cell, 2003, 15(1): 19-32. [78] Shi H Z, Quintero F J, Pardo J M, et al . The putative plasma membrane Na + /H + antiporter SOS 1 controls long-distance Na + transport in plants. Plant Cell, 2002, 14: 465-477. [79] Wu G Q, Wang P, Ma Q, et al . Selective transport capacity for K + over Na + is linked to the expression levels of PtSOS 1 in halophyte Puccinellia tenuiflora . Functional Plant Biology, 2012, 39: 1047-1057. [80] Liu M, Wang T Z, Zhang W H. Sodium extrusion associated with enhanced expression of SOS 1 underlies different salt tolerance between Medicago falcata and Medicago truncatula seedlings. Environmental and Experimental Botany, 2015, 110: 46-55. [81] Guo Q, Wang P, Ma Q, et al .Selective transport capacity for K + over Na + is linked to the expression levels of PtSOS 1 in halophyte Puccinellia tenuiflora . Functional Plant Biology, 2012, 39: 1047-1057. [82] Ma Q, Li Y X, Yuan H J, et al . ZxSOS 1 is essential for long-distance transport and spatial distribution of Na + and K + in the xerophyte Zygophyllum xanthoxylum . Plant and Soil, 2014, 374: 661-676. [83] Feki K, Quintero F J, Khoudi H, et al . A constitutively active form of a durum wheat Na + /H + antiporter SOS 1 confers high salt tolerance to transgenic Arabidopsis . Plant Cell Reports, 2014, 33(2): 277-288. [84] Nie W X, Xu L, Yu B J. A putative soybean GmsSOS 1 confers enhanced salt tolerance to transgenic Arabidopsis sos 1-1 mutant. Protoplasma, 2015, 252(1): 127-134. [85] Ishitani M, Liu J, Halfter U, et al . SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell, 2000, 12(9): 1667-1678. [86] Martinez-Atienza J, Jiang X, Garciadeblas B, et al . Conservation of the salt overly sensitive pathway in rice. Plant Physiology, 2007, 143: 1001-1012. [87] Gaxiola R A, Rao R, Sherman A, et al . The Arabidopsis thaliana proton transporters, AtNHX1 and AVP1, can function in cation detoxification in yeast. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96: 1480-1485. [88] Apse M P, Aharon G S, Snedden W A, et al . Salt tolerance confermi by over expression of a vacuolar NaCMC antiport in Arabidopsis . Science, 1999, 285(12): 1256-1258. [89] Venema K, Quintero F J, Pardo J M, et al . The Arabidopsis Na + /H + exchanger catalyzes low affinity Na + and K + transport in reconstituted vesicles. Journal of Biological Chemistry, 2002, 277: 2413-2418. [90] Yamaguchi T, Fukuda-Tanaka S, Inagaki Y, et al . Genes encoding the vacuolar Na + /H + exchanger and flower coloration. Plant Cell Physiology, 2001, 142: 451-461. [91] Sottosanto J B, Gelli A, Blumwald E. DNA array analyses of Arabidopsis thaliana lacking a vacuolar Na + /H + antiporter: impact of AtNHX1 on gene expression. Plant Journal, 2004, 40: 752-771. [92] Fukuda A, Nakamura A, Tanaka Y. Molecular cloning and expression of the Na + /H + exchanger gene in Oryza sativa . BBA-Gene Structure and Expression, 1999, 1446: 149-155. [93] Ohta M, Hayashi Y, Nakashima A, et al . Introduction of a Na + /H + antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Letters, 2002, 532: 279-282. [94] Fukuda A, Chiba K, Maeda M, et al . Effect of salt and osmotic stresses on the expression of genes for the vacuolar H + -pyrophosphatase, H + -ATPase subunitA, and Na + /H + antiporter from barley. Journal of Experimental Botany, 2004, 55: 585-594. [95] Wu C A, Yang G D, Meng Q W, et al . The cotton GhNHX 1 gene encoding a novel putative tonoplast Na + /H + antiporter plays an important role in salt stress. Plant Cell Physiology, 2004, 45: 600-607. [96] Zorb C, Noll A, Karl S, et al . Molecular characterization of Na + /H + antiporters ( ZmNHX ) of maize ( Zea mays L.) and their expression under salt stress. Journal of Plant Physiology, 2005, 162: 55-66. [97] Brini F, Gaxiola R A, Berkowitz G A, et al . Cloning and characterization of a wheat vacuolar cation/proton antiporter and pyrophosphatase proton pump. Plant Physiology and Biochemistry, 2005, 43:347-354. [98] Yu J N, Huang J, Wang Z M, et al . An Na + /H + antiporter gene from wheat plays an important role in stress tolerance. Journal of Biosciences, 2007, 32: 1153-1161. [99] Yang Q C, Wu M S, Wang P Q, et al . Cloning and expression analysis of a vacuolar Na + /H + antiporter gene from alfalfa. DNA sequece, 2005, 16: 352-357. [100] Li W Y, Wong F L, Tsai S N, et al . Tonoplast-located GmCLC 1 and GmNHX 1 from soybean enhance NaCl tolerance in transgenic bright yellow (BY)-2cells. Plant, Cell and Environment, 2006, 29: 1122-1137. [101] Qiao W H, Zhao X Y, Li W, et al . Overexpression of AeNHX 1, a root-specific vacuolar Na + /H + antiporter from Agropyron elongatum , confers salt tolerance to Arabidopsis and Festuca plants. Plant Cell Reports, 2007, 26: 1663-1672. [102] Verma D, Singla-Pareek S L, Rajagopal D, et al . Functional validation of a novel isoform of Na + /H + antiporter from Pennisetum glaucum for enhancing salinity tolerance in rice. Journal of Biosciences, 2007, 32: 621-628. [103] Li J Y, He X W, Xu L, et al . Molecular and functional comparisons of the vacuolar Na + /H + exchangers originated from glycophytic and halophytic species. Journal of Zhejiang University Science, 2008, 9: 132-140. [104] Ye C Y, Zhang H C, Chen J H, et al . Molecular characterization of putative vacuolar NHX-type Na + /H + exchanger genes from the salt-resistant tree Populus euphratica . Physiologia Plantarum, 2009, 137: 166-174. [105] Guan B, Hu Y, Zeng Y, et al . Molecular characterization and functional analysis of a vacuolar Na + /H + antiporter gene ( HcNHX 1) from Halostachys caspica . Molecular Biology Reports, 2010, 38: 1889-1899. [106] Jha A, Joshi M, Yadav N, et al . Cloning and characterization of the Salicornia brachiata Na + /H + antiporter gene SbNHX 1 and its expression by abiotic stress. Molecular Biology Reports, 2011, 38: 1965-1973. [107] Liu L, Zeng Y, Pan X, et al . Isolation, molecular characterization, and functional analysis of the vacuolar Na + / H + antiporter genes from the halophyte Karelinia caspica . Molecular Biology Reports, 2012, 39: 7193-7202. [108] Yuan H J, Ma Q, Wu G Q, et al . ZxNHX controls Na + and K + homeostasis at the whole-plant level in Zygophyllum xanthoxylum through feedbackregulation of the expression of genes involved in their transport. Annals of Botany, 2015, 115(3): 495-507. [109] Yin X Y, Yang A F, Zhang K W, et al . Production and analysis of transgenic maize with improved salt tolerance by the introduction of AtNHX 1 gene. Acta Botanica Sinica, 2004, 46: 854-861. [110] Xue Z Y, Zhi D Y, Xue G, et al . Enhanced salt tolerance of transgenic wheat ( Tritivum aestivum L.) expressing a vacuolar Na + /H + antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na + . Plant Science, 2004, 167: 849-859. [111] He C, Yan J, Shen G, et al . Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field. Plant Cell Physiology, 2005, 46: 1848-1854. [112] Banjara M, Zhu L, Shen G, et al . Expression of an Arabidopsis sodium/proton antiporter gene ( AtNHX 1) in peanut to improve salt tolerance. Plant Biotechnology Reports, 2012, 6: 59-67. [113] Rajagopal D, Agarwal P, Tyagi W, et al . Pennisetum glaucum Na + /H + antiporter confers high level of salinity tolerance in transgenic Brassica Juncea . Molecular Breeding, 2007, 19: 137-151. [114] Shi L Y, Li H Q, Pan X P, et al . Improvement of Torenia fournieri salinity tolerance by expression of Arabidopsis AtNHX 5. Functional Plant Biology, 2008, 35: 185-192. [115] Zhang G H, Su Q, An L J, et al . Characterization and expression of a vacuolar Na + /H + antiporter gene from the monocot halophyte Aeluropus littoralis . Plant Physiology and Biochemistry, 2008, 46: 117-126. [116] Zhang Y M, Liu Z H, Wen Z Y, et al . The vacuolar Na + -H + antiport gene TaNHX 2 confers salt tolerance on transgenic alfalfa ( Medicago sativa ). Functional Plant Biology, 2012, 39: 708-716. [117] Joshi M, Jha A, Mishra A, et al . Developing transgenic Jatropha using the SbNHX 1 gene from an extreme halophyte for cultivation in saline wasteland. PLoS One, 2013, 8(8): e71136. [118] Mishra S, Alavilli H, Lee B H, et al . Cloning and functional characterization of a vacuolar Na + /H + antiporter gene from mungbean ( VrNHX 1) and its ectopic expression enhanced salt tolerance in Arabidopsis thaliana . PLoS One, 2014, 9(10): e106678. [119] Sarafian V, Kim Y, Poole R J, et al . Molecular cloning and sequence of cDNA encoding the pyrophosphate-energized vacuolar membrance proton pump of Arabidopsis thaliana . Proceedings of the National Academy of Sciences of the United States of America, 1992, 89: 1775-1779. [120] Gaxiola R A, Palmgren M G, Schumacher K. Plant proton pumps. FEBS Letters, 2007, 581: 2204-2214. [121] Gao F, Gao Q, Duan X G, et al . Cloning of an H + -PPase gene from Thellungiella halophila and its heterologous expression to improve tobacco salt tolerance. Journal of Experimental Botany, 2006, 57: 3259-3270. [122] Guo S L, Yin H B, Zhang X, et al . Molecular cloning and characterization of a vacuolar H + -pyrophosphatase gene, SsVP, from the halophyte Suaeda salsa and its overexpression increases salt and drought tolerance of Arabidopsis . Plant Molecular Biology, 2006, 60: 41-50. [123] Li J, Yang H, Peer W A, et al . Arabidopsis H + -PPase AVP 1 regulates auxin-mediated organ development. Science, 2005, 310: 121-125. [124] Park S, Li J, Pittman J K, et al . Up-regulation of a H + - pyrophosphatase (H + -PPase) as a strategy to engineer drought-resistant crop plants. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102: 18830-18835. [125] Bao A K, Wang S M, Wu G Q, et al . Overexpression of the Arabidopsis H + -PPase enhanced resistance to salt and drought stress in transgenic alfalfa ( Medicago sativa L.). Plant Science, 2009, 176: 232-240. [126] Li Z G, Baldwin M, Hu Q, et al . Heterologous expression of Arabidopsis H + -pyrophosphatase enhances salt tolerance in transgenic creeping bentgrass ( Agrostis stolonifera L.). Plant Cell Environment, 2010, 33: 272-289. [127] Schilling R K, Marschner P, Shavrukov Y, et al . Expression of the Arabidopsis vacuolar H + -pyrophosphatase gene ( AVP 1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field. Plant Biotechnology Journal, 2014, 12(3): 378-386. [128] Kumar T, Uzma, Khan M R, et al . Genetic improvement of sugarcane for drought and salinity stress tolerance using Arabidopsis vacuolar pyrophosphatase ( AVP 1) gene. Molecular Biotechnology, 2014, 56(3): 199-209. [129] Lv S L, Lian L J, Tao P L, et al . Overexpression of Thellungiella halophila H + -PPase ( TsVP ) in cotton enhances drought stress resistance of plants. Planta, 2009, 229: 899-910. [130] Pei L, Wang J, Li K, et al . Overexpression of Thellungiella halophila H + -pyrophosphatase gene improves low phosphate tolerance in maize. PLOS One, 2012, 7(8): e43501. [131] Yao M, Zeng Y, Liu L, et al . Overexpression of the halophyte Kalidium foliatum H + -pyrophosphatase gene confers salt and drought tolerance in Arabidopsis thaliana . Molecular Biology Reports, 2012, 39: 7989-7996. [132] Khoudi H, Maatar Y, Gouiaa S, et al . Transgenic tobacco plants expressing ectopically wheat H + -pyrophosphatase (H + -PPase) gene TaVP 1 show enhanced accumulation and tolerance to cadmium. Journal of Plant Physiology, 2012, 169: 98-103. [133] Li X, Guo C, Gu J, et al . Overexpression of VP, a vacuolar H + -pyrophosphatase gene in wheat ( Triticum aestivum L.), improves tobacco plant growth under Pi and N deprivation, high salinity, and drought. The Journal of Experimental Botany, 2014, 65(2): 683-696. [134] Zhao F Y, Zhang X J, Li P H, et al . Co-expression of the Suaeda salsa SsNHX 1 and Arabidopsis AVP 1 confer greater salt tolerance to transgenic rice than the single SsNHX 1. Molecular Breeding, 2006, 17: 341-353. [135] Liu S P, Zheng L Q, Xue Y H, et al . Overexpression of OsVP 1 and OsNHX 1 increases tolerance to drought and salinity in rice. Journal of Integrative Plant Biology, 2010, 53: 444-452. [136] Brini F, Hanin M, Mezghani I, et al . Overexpression of wheat Na + /H + antiporter TNHX 1 and H + - pyrophosphatase TVP 1 improve salt- and drought-stress tolerance in Arabidopsis thaliana plants. Journal of Experimental Botany, 2007, 58: 301-308. [137] Bhaskaran S, Savithramma D L. Co-expression of Pennisetum glaucum vacuolar Na + /H + antiporter and Arabidopsis H + - pyrophosphatase enhances salt tolerance in transgenic tomato. Journal of Experimental Botany, 2011, 62: 5561-5570. [138] Gouiaa S, Khoudi H, Leidi E O, et al . Expression of wheat Na + /H + antiporter TNHXS 1 and H + - pyrophosphatase TVP 1 genes in tobacco from a bicistronictranscriptional unit improves salt tolerance. Plant Molecular Biology, 2012, 79: 137-155. [139] Bao A K, Wang Y W, Xi J J, et al . Co-expression of xerophyte Zygophyllum xanthoxylum ZxNHX and ZxVP 1-1 enhances salt and drought tolerance in transgenic Lotus corniculatus by increasing cations accumulation. Functional Plant Biology, 2014, 41: 203-214. [140] Hu L, Lu H, Liu Q L, et al . Overexpression of mtlD gene in transgenic Populus tomentosa improves salt tolerance through accumulation of mannitol. Tree Physiology, 2005, 25: 1273-1281. [141] Liu Y, Wang G Y, Liu J J, et al . Transfer of E. coli gutD gene into maize and regeneration of salt-tolerant transgenic plants. Science in China Series C-Life Science, 1999, 42(1): 90-95. [142] Wang H Z, Huang D N, Lu R F, et al . Salt tolerance of transgenic rice ( Oryza sativa L.) with mtlD gene and gutD gene. Chinese Science Bulletin, 2000, 45: 1685-1690. [143] Kishor P B K, Hong Z, Mian G H. Over expression of △’-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiology, 1995, 108: 1387-1394. [144] Dure L, Greenway S C, Galau G A. Developmental biochemistry of cottonseed embryogenesis and germination-changing messenger ribonucleic-acid populations as shown by in vitro and in vivo protein-synthesis. Biochemistry, 1981, 20(14): 4162-4168. [145] Xu D, Duan X, Wang B, et al . Expression of a late embryogenesis abundant protein gene HVA 1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiology, 1996, 110: 249-257. [146] Zhang N, Wang D, Si H J. Isolation and induced expression of betaine aldehyde dehydrogenase genefrom spinach. Journal of Agricultural Biotechnology, 2004, 12(5): 612-613. [147] Jia G X, Zhu Z Q, Chang F Q, et al . Transformation of tomato with the BADH gene from Atriplex improves salt tolerance. Plant Cell Reports, 2002, 21(2): 141-146. [148] Tang N, Zhang H, Li X H, et al . Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice. Plant Physiology, 2012, 158: 1755-1768. [149] Shinozaki K, Yamaguchi-Shinozaki K. Gene expression and signal transduction in water stress response. Plant Physiology, 1997, 115: 327-334. [150] Wu H J, Zhang Z H, Wang J Y, et al . Insights into salt tolerance from the genome of Thellungiella salsuginea . Proceedings of the National Academy of Sciences, 2012, 109(30): 12219-12224. [151] Taji T, Seki M, Satou M, et al . Comparative genomics in salt tolerance between Arabidopsis and a Rabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiology, 2004, 135: 1697-1709. [152] Sheen J. Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiology, 2001, 127: 1466-1475. [153] Moon H, Lee B, Choi G, et al . NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular reduxstate and enhances multiple stress tolerance in transgenic plants. Proceedings of the National Academy of Sciences, 2003, 100(1): 358-363. [154] Xie T, Ren R, Zhang Y Y, et al . Molecular mechanism for inhibition of a critical component in the Arabidopsis thaliana abscisic acid signal transduction pathways, SnRK2.6, by protein phosphatase ABI 1. Journal of Biological Chemistry, 2012, 287: 794-802. [155] Li R F, Zhang J W, Wu G Y, et al . HbCIPK2, a novel CBL-interacting protein kinase from halophyte Hordeum brevisubulatum , confers salt and osmotic stress tolerance. Plant, Cell and Environment, 2012, 35: 1582-1600. [156] Zhang Q, Lin F, Mao T, et al . Phosphatidic acid regulates microtubule organization by interacting with MAP65-1 in response to salt stress in Arabidopsis . Plant Cell, 2012, 24: 4555-4576. [157] Roxas V P, Lodhi S A, Garrett D K, et al . Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant & Cell Physiology, 2000, 41(11): 1229-1234. [158] Kovtun Y, Chiu W L, Tena G, et al . Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97: 2940-2945. [159] Zhang Z, Wang J, Zhang R X, et al . The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis . The Plant Journal, 2012, 71: 273-287. [160] Ge Y, Gao P, Xia J Z, et al . The effects of calcium chloride on improving te salt resistance of Zea mays L. Journal of Northeast Agicultural University, 2004, 35(3): 281-284. [161] Zhang L X, Chang Q S, Hou X G, et al . Effects of sodium salt stress on seed germination of Prunella vulgaris . Acta Prataculturae Sinica, 2015, 24(3): 177-186. [162] Qian Q, Qu L J, Yuan M, et al .Research advances on plant science in China in 2012. Chinese Bulletin of Botany, 2013, 48: 231-287. [163] Galvan-Ampudia C S, Testerink C. Salt stress signals shape the plant root. Current Opinion in Plant Biology, 2011, 14: 296-302. [164] Brady S M, Sarkar S F, Bonetta D, et al . The abscisic acid insensitive 3( ABI 3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis . Plant Journal, 2003, 34: 67-75. [165] An J P, Chen K S. The relations between the injury of plasma membrane and the increase of aba content in wheat leaves. Jo |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||