[1] Zhang J B, Huang W N. Advances on physiological and ecological effects of cadmium on plants. Acta Ecologiga Sinica, 2000, 20(3): 514-523. [2] Liu J X. Physiological and ecological responses of maize seedlings to cadmium stress. Chinese Journal of Ecology, 2005, 24(3): 265-268. [3] Zhang L, Yu Y L, Zhang L. Influence of added cadmium stress on photosynthetic characteristics of maize in seedling stage. Acta Agriculturae Boreali-Sinica, 2008, 23(1): 101-104. [4] Qin H M, Peng L L, Yang X, et al . Effect of Cd 2+ on the seed germination and seedling growth of Cynodon dactylon and Eremochloa ophiuroides . Acta Prataculturae Sinica, 2015, 24(5): 100-107. [5] Li J M, Wang H X. Eco-physiological responses and resistance to cadmium stress in three varieties of maize. Journal of Yunnan University, 2000, 22(4): 311-317. [6] Jarvis J C, Jones L H P, Hopper M J. Cadmium uptake from solution by plants and its transport from roots to shoots. Plant Soil, 1976, 44: 179-191. [7] Krupa Z, Moniak M. The stage of leaf maturity implicates the response of the photosynthetic apparatus to cadmium toxicity. Plant Science, 1998, 138: 149-156. [8] Bazzaz F A, Rolfe G L, Carlson R W. Effect of Cd on photosynthesis and transpiration of excised leaves of corn and sunflower. Physiology of Plant, 1974, 32: 373-376. [9] Zhao S C, Sun J W, Ma Y Z, et al . Effects of cadmium on reactive oxygen species metabolism, activities and gene expressions of superoxide dismutase and catalase in maize ( Zea mays ) seedling. Scientia Agricultura Sinica, 2008, 41(10): 3025-3032. [10] Zhao X, Wang Y L, Wang Y J, et al . Extracellular Ca 2+ regulating stomatal movement and plasma membrane K + channels in guard cells of Vicia faba under salt stress. Acta Agronomica Sinica, 2008, 34(11): 1970-1976. [11] Liu D H, Wang M, Zou J H, et al . Uptake and accumulation of cadmium and some nutrient ions by roots and shoots of maize ( Zea mays L.). Pakistan Journal of Botany, 2006, 38(3):701-709. [12] Zhang N H, Gao H Y, Zou Q. Effect of calcium on alleviation of decreased photosynthetic ability in salt-stressed maize leaves. Acta Phytoecologica Sinica, 2005, 29(2): 324-330. [13] Wang H, Zhou W, Lin B. Effects of Ca on growth and some physiological characteristics of maize under Cd stress. Plant Nutrition and Fertilizer Science, 2001, 7(1): 78-87. [14] Wang F, Wang D D, Zhao J, et al . Positive effect of calcium on oxidative damage in maize seedling under chilling stress. Agricultural Research in the Arid Area, 2014, 32(1): 155-160. [15] van Kooten O, Snel J F H. Plant spectrofluorometry: Applications and basic research. Photosynthetica, 2002, 40: 528-533. [16] Zhang Y P, Fan H W, Yang S J. Alleviating effects of exogenous salicylic acid on growth, photosynthesis and reactive oxygen metabolism in melon seedlings under cadmium stress. Plant Physiology Journal, 2014, 50(10): 1555-1562. [17] Muradoglu F, Gundogdu M, Ercisli S, et al . Cadmium toxicity affects chlorophyll a and b content, antioxidant enzyme activities and mineral nutrient accumulation in strawberry. Biological Research, 2015, 48(1): 11-15. [18] Woolhouse H W. Toxicity and tolerance in the responses of plant to metals. Physiological Plant Ecology, 1983, 12: 245-300. [19] Li G, Zhang S P, Liu P. Effect of cadmium on photosystem activities of maize ( Zea mays L.) leaves. Scientia Agricultura Sinica, 2011, 44(15): 3118-3126. [20] Alcantara E, Romera F J, Canete M, et al . Effects of heavy metals on both induction and function of root Fe (III) reductase in Fe-deficient cucumber ( Cucumis sativus L.) plants. Journal of Experimental Botany, 1994, 45: 1893-1898. [21] Das P, Samantaray S, Rout G R. Studies on cadmium toxicity in plants: a review. Environmental Pollution, 1997, 98: 29-36. [22] Krause G H, Weis E. Chlorophyll fluorescence and photosynthesis: The basics. Plant Molecular Biology, 1991, 42: 313-349. [23] Baker N R. A possible role for photosystem II in environmental perturbations of photosynthesis. Physiology Plant, 1991, 81: 563-570. [24] Havaux M, Strasser R J, Greppin H. A theoretical and experimental analysis of the qP and qN coefficients of chlorophyll fluorescence quenching and their relation to photochemical and non photochemical event. Photosynthesis Research, 1991, 27: 41-45. [25] Carrasco R M, Rodriguez J S, Perez P. Changes in chlorophyll fluorescence during the course of photoperiod and in response to drought in Casuarina equisetifolia forst. Photosynthetica, 2002, 40(3): 363-368. [26] Zhou W, Lin B. Alleviation of Cd toxicity by Ca for maize ( Zea mays ) and its mechanism. International Symposium on Soil, Human and Environment Interactions[M]. Beijing: China Science and Technology Press, 1998: 267-271. [27] Perfus-Barbeoch L, Leonhardt N, Vavasseur A, et al . Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. The Plant Journal: for Cell and Molecular Biology, 2002, 32(4): 539-548. [1] 张金彪, 黄维南. 镉对植物的生理生态效应的研究进展. 生态学报, 2000, 20(3): 514-523. [2] 刘建新. 镉胁迫下玉米幼苗生理生态的变化. 生态学杂志, 2005, 24(3): 265-268. [3] 张磊, 于燕玲, 张磊. 外源镉胁迫对玉米幼苗光合特性的影响. 华北农学报, 2008, 23(1): 101-104. [4] 岑画梦, 彭玲莉, 杨雪, 等. Cd 2+ 对狗牙根、假俭草种子萌发及幼苗生长的影响. 草业学报, 2015, 24(5): 100-107. [5] 李俊梅, 王焕校. 镉胁迫下玉米生理生态反应与抗性差异研究. 云南大学学报(自然科学版), 2000, 22(4): 311-317. [9] 赵士诚, 孙静文, 马有志, 等. 镉对玉米幼苗活性氧代谢、超氧化物歧化酶和过氧化氢酶活性及其基因表达的影响. 中国农业科学, 2008, 41(10): 3025-3032. [10] 赵翔, 汪延良, 王亚静, 等. 盐胁迫条件下外源Ca 2+ 对蚕豆气孔运动及质膜K + 通道的调控. 作物学报, 2008, 34(11): 1970-1976. [12] 张乃华, 高辉远, 邹琦. Ca 2+ 缓解NaCl胁迫引起的玉米光合能力下降的作用. 植物生态学报, 2005, 29(2): 324-330. [13] 汪洪, 周卫, 林葆. 钙对镉胁迫下玉米生长及生理特性的影响. 植物营养与肥料学报, 2001, 7(1): 78-87. [14] 王芳, 王丹丹, 赵娟, 等. 钙对低温胁迫下玉米幼苗氧化损伤的保护作用. 干旱地区农业研究, 2014, 32(1): 155-160. [16] 张永平, 范红伟, 杨少军. 外源水杨酸对镉胁迫下甜瓜幼苗生长、光合作用和活性氧代谢的缓解效应. 植物生理学报, 2014, 50(10): 1555-1562. [19] 李耕, 张善平, 刘鹏. 镉对玉米叶片光系统活性的影响. 中国农业科学, 2011, 44(15): 3118-3126. [26] 周卫, 林葆. 钙缓解玉米( Zea mays )镉毒性及其作用机理.土壤、人与环境相互作用国际研讨会[M]. 北京: 中国科学技术出版社, 1998: 267-271. |