[1] Ribaut J M, Hoisington D A, Deutsch J A, et al . Identification of quantitative trait loci under drought conditions in tropical maize. 1. Flowering parameters and the anthesis-silking interval. Theoretical and Applied Genetics, 1996, 92: 905-914. [2] Wang Y T, Zhou Y F, Li F X, et al . Identification and classification of sorghum cultivars for drought resistance during germination stage based on principal components analysis and self organizing map cluster analysis. Acta Agronomica Sinica, 2014, 40(1): 110-121. [3] Liu X D, Li X H, Li W H, et al . Analysis on difference for drought responses of maize inbred lines at seedling stage. Journal of Maize Sciences, 2004, 1(3): 63-65. [4] Zhao G W, Wang J H. Effect of gibberellin and uniconazole on mesocotyl elongation of dark-grown maize under different seeding depths. Plant Production Science, 2008, 11(4): 423-429. [5] Dong C J, Wang Z R, Zhong G R, et al . The first report about the application of long rhizome germplasm of blue maize. Journal of Shanxi Agricultural Sciences, 1994, 22(2): 13-15. [6] Liang S M, Su S W, Wang A P, et al . Breeding of long-rhizomes maize variety HanYu No.5 and it’s main points of cultivation. Journal of Shanxi Agricultural Sciences, 2008, 36(4): 34-36. [7] Wang W, Zou Q. Studies on coleoptile length as criterion of appraising drought resistance in wheat. Acta Agronomica Sinica, 1997, 23(4): 459-467. [8] Dong H Z, Li W J, Miao X W. Ecological effects of mulched deep-seeding in relation to stand establishment and lint yield of cotton in saline soil. Cotton Science, 2011, 23(2): 121-126. [9] Wu J Y, Liu J H, Li Q, et al . Effect of exogenous substances on the growth and chemical compositions of upper leaves of tobacco. Agricultural Research in the Arid Areas, 2009, 27(2): 138-141, 147. [10] Lin J R, Zhang G H, Wu M G, et al . Genetic analysis of mesocotyl elongation in rice ( Oryza sativa L. subsp. japonica ). Acta Agronomica Sinica, 2006, 32(2): 249-252. [11] Zhao G W, Ma P, Wang J H, et al . Identification of deep-seeding tolerance in different maize inbred lines and their physiological response to deep-seeding condition. Journal of Maize Sciences, 2009, 17(5): 9-13. [12] Ma D R, Wang N, Wang Y, et al . Germination dynamics of weedy rice in northern China at different sowing depths. Chinese Journal of Rice Science, 2008, 22(2): 215-218. [13] Hoshikaw. Underground organs of the seedlings and the systematics of gramineae. Botanical Gazette, 1969, 130: 192-203. [14] Zhang H W, Ma P, Zhao Z N, et al . Mapping QTL controlling maize deep-seeding tolerance-related traits and confirmation of a major QTL for mesocotyl length. Theoretical and Applied Genetics, 2012, 124: 223-232. [15] Rebetzke G J, Ellis M H, Bonnett D G. Molecular mapping of genes for coleoptile growth in bred wheat ( Triticum aestivum L.). Theoretical and Applied Genetics, 2007, 114: 1173-1183. [16] Zhang L, Liu Z Z, Huang Y Q, et al . Deep planting tolerance characteristics analysis on 46 maize inbred lines. Journal of Agricultural University of Hebei, 2007, 30(3): 18-21. [17] Wu H Y, Cui Y H, Sun C F. Study on relations of sowing depth and seedling emergence of different types of maize seeds. Journal of Maize Sciences, 2011, 19(2): 109-113. [18] Peng Y L, Yang F L, Zhao X Q, et al . Difference analysis of deep-sowing tolerant characteristics in different maize inbred lines. Agricultural Research in the Arid Areas, 2014, 32(1): 25-32. [19] Zheng H J, Xu R R, Kong L J, et al . Certification for stay-green traits and genetics diversity of maize inbred lines by SSR markers. Journal of Maize Sciences, 2011, 19(3): 19-24. [20] Almeida G D, Makumbi D, Magorokosho C, et al . QTL mapping in three tropical maize populations reveals a set of constitutive and adaptive genomic regions for drought tolerance. Theoretical and Applied Genetics, 2013, 126(3): 583-600. [21] Hao D R, Cheng Y J, Xu C W, et al . Screening of maize germplasms for salt-tolerance and evaluation of population genetic structure. Journal of Plant Genetic Resources, 2013, 14(6): 1153-1160. [22] Saghai-Maroof M A, Soliman K M, Jorgenson R, et al . Ribosomal DNA spacer length polymorphism s in barley: Mendelian inheritance, chromosomal location and population dynamics. Proceedings of the National Academy of Sciences, 1984, 81: 8014-8018. [23] Wang L Y, Ji Y J. Effect of sowing depth nutrition consumption of germinating herbage. Sichuan Caoyuan, 2003, 5: 14-16. [24] Sanusan S, Polthanee A, Seripong S. Seeding establishment and yield of direct-seeded rice under different seeding depths. Khon Kaen Agriculture Journal, 2009, 37: 15-22. [25] Yue L J, Wen T, Yang Q, et al . Effects of different sowing depths on seeding emergence of maize. Journal of Maize Sciences, 2012, 20(5): 88-93. [26] Ellis M, Rebetzke G, Chandler P, et al . The effect of different height reducing genes on the early growth of wheat. Functional Plant, 2004, 31: 583-589. [27] Zhao H J, Zhang H G, Xiang W W, et al . Studies on α-amylase activity and coleoptile length in plateau spring wheat varieties with different drought resistance. Journal of Anhui Agricultural Sciences, 2008, 36(13): 5269-5271, 5326. [28] Dai H F, Ou X Q, Wang W, et al . Effects of sowing depth on cold resistant physiology of wheat. Gansu Agriculture Science and Technology, 2010, 2: 9-11. [29] Yu J B, Bai G H. Mapping quantitative trait loci for long coleoptile in Chinese wheat landrace wangshuibai. Crop Science, 2010, 50: 43-50. [30] Amita M, William F, Schillinger, et al . Wheat seeding emergence from deep planting depths and its relationship with coleoptile length. Plos One, 2013, 3: 1372-1376. [31] Troyer A F. The location of genes governing long first internode of corn. Genetics, 1997, 145(4): 1149-1154. [32] Pan Q Y, Wen X F, Pan T Y, et al . Wheat coleoptile and emergence vigor and drought-resistance. Agricultural Research in the Arid Areas, 2012, 30(3): 51-57, 62. [33] Zhang X L, Chen J H, Lin Q, et al . Analysis on the characteristics of tolerance of new wheat lines to deep seeding. Bulletin of Agricultural Science and Technology, 2009, 6: 49-51. [2] 王艺陶, 周宇飞, 李丰先, 等. 基于主成分和SOM聚类分析的高粱品种萌发期抗旱性鉴定与分类. 作物学报, 2014, 40(1): 110-121. [3] 刘贤德, 李晓辉, 李文华, 等. 玉米自交系苗期耐旱性差异分析. 玉米科学, 2004, 1(3): 63-65. [5] 董存吉, 王早荣, 钟改荣, 等. 长根茎蓝粒玉米种质利用初报. 山西农业科学, 1994, 22(2): 13-15. [6] 梁素明, 苏书文, 王爱萍, 等. 长根茎玉米品种旱玉5号的选育及栽培技术要点. 山西农业科学, 2008, 36(4): 34-36. [7] 王玮, 邹琦. 胚芽鞘长度作为冬小麦抗旱性鉴定指标的研究. 作物学报, 1997, 23(4): 459-467. [8] 董合忠, 李维江, 苗兴武. 盐碱地深播覆膜的生态效应及对棉花成苗和产量的影响. 棉花学报, 2011, 23(2): 121-126. [9] 武俊英, 刘景辉, 李倩, 等. 内蒙古地区不同耕作方式与播种深度燕麦耐盐碱性分析. 干旱地区农业研究, 2009, 27(2): 138-141, 147. [10] 林建荣, 张光恒, 吴明国, 等. 水稻中胚轴伸长特性的遗传分析. 作物学报, 2006, 32(2): 249-252. [11] 赵光武, 马攀, 王建华, 等.不同玉米自交系耐深播能力鉴定及对深播胁迫的生理响应. 玉米科学, 2009, 17(5): 9-13. [12] 马殿荣, 王楠, 王莹, 等. 中国北方杂草稻深覆土条件下出苗动力源分析. 中国水稻科学, 2008, 22(2): 215-218. [16] 张磊, 刘志增, 黄亚群, 等. 46个玉米自交系耐深播特性分析. 河北农业大学学报, 2007, 30(3): 18-21. [17] 吴海燕, 崔彦宏, 孙昌凤. 不同类型玉米杂交种播种深度与出苗相关性的研究. 玉米科学, 2011, 19(2): 109-113. [18] 彭云玲, 杨芳林, 赵小强, 等. 不同玉米自交系耐深播能力的差异分析. 干旱地区农业研究, 2014, 32(1): 25-32. [19] 郑洪建, 许瑞瑞, 孔令杰, 等. 玉米自交系的保绿性鉴定及其遗传多样性的SSR分析. 玉米科学, 2011, 19(3): 19-24. [21] 郝德荣, 程玉静, 徐辰武, 等.玉米耐盐种质筛选及群体遗传结构分析. 植物遗传资源学报, 2013, 14(6): 1153-1160. [23] 王柳英, 纪亚君. 播种深度对牧草种子萌发时营养物质消耗量的影响. 四川草原, 2003, 5: 14-16. [25] 岳丽杰, 文涛, 杨勤, 等. 不同播种深度对玉米出苗的影响. 玉米科学, 2012, 20(5): 88-93. [27] 赵会君, 张怀刚, 相微微, 等. 抗旱性不同的高原春小麦品种α-淀粉酶活性和胚芽鞘长度的研究. 安徽农业科学, 2008, 36(13): 5269-5271, 5326. [28] 代海芳, 欧行奇, 王伟, 等. 播种深度对小麦抗寒生理的影响. 甘肃农业科技, 2010, 2: 9-11. [32] 潘前颖, 文学飞, 潘田园, 等. 小麦胚芽鞘与耐深播抗旱研究进展. 干旱地区农业研究, 2012, 30(3): 51-57, 62. [33] 张晓龙, 陈佳慧, 林琪, 等. 小麦新品系耐深播特性分析. 农业科技通报, 2009, 6: 49-51. |