[1] Gao J S, Xu M G, Dong C H, et al . Effects of long-term rice-rice-green manure cropping rotation on rice yield and soil fertility. Acta Agronomica Sinica, 2013, 34(2): 343-349. [2] Benjamin O D, Josephine P O, Isaiah I C W, et al . Legume-wheat rotation effects on residual soil moisture, nitrogen and wheat yield in tropical regions. Advances in Agronomy, 2009, 101: 316-349. [3] Ramosm M G, Villatoro M A A, Urquiaga S, et al . Quantification of the contribution of biological nitrogen fixation to tropical green manure crops and the residual benefit to a subsequent maize crop using 15 N-isotope techniques. Journal of Biotechnology, 2001, 91: 105-115. [4] Glasener K M, Wagger M G, MacKown C T, et al . Contributions of shoot and root nitrogen-15 labeled legume nitrogen sources to a sequence of three cereal crops. Soil Science Society of America Journal, 2002, 66(2): 523-530. [5] Hooker K V, Coxon C E, Hackett R, et al . Evaluation of cover crop and reduced cultivation for reducing nitrate leaching in Ireland. Journal of Environmental Quality, 2008, 37(1): 138-145. [6] Kumar K, Goh K M. An agement practices of antecedent leguminous and non-leguminous crop residues in relation to winter wheat yields, nitrogen uptake, soil nitrogen mineralization and simple nitrogen balance. European Journal of Agronomy, 2002, (16): 295-308. [7] Mclaren A D. Soil Biochemical[M]. Gui J K, translation. Beijing: Beijing Agricultural Press, 1984. [8] Ba Y L, Tian X H, Wan D, et al . Labile carbon and nitrogen dynamic changes in soils incorporated with different parts of maize plants. Journal of Plant Nutrition and Fertilizer, 2013, 19(5): 1166-1173. [9] Li Z S, Lian X J, Wang W, et al . Research progress of green manure in China. Pratacultural Science, 2013, 30(7): 1135-1140. [10] Sun Y R, Shi Y, Chen G J, et al . Evaluation of the germination characteristics and drought resistance of green manure crops under PEG stress. Acta Prataculturae Sinica, 2015, 24(3): 89-98. [11] Xu J, Zhang X Z, Li T X, et al . Phosphorus absorption and acid phosphatase activity in wild barley genotypes with different phosphorus use efficiencies. Acta Prataculturae Sinica, 2015, 24(1): 88-98. [12] Lang G F. To develop the high potassium green manure grain amaranth to alleviate the new way of potassium source shortage in our province. Chinese Journal of Soil Agro-Chemistry Science, 1995, (10): 29-32. [13] Sun Y. The Effect of Green Manure on Soil Biological Characteristics[D]. Yangling: Northwest Agriculture and Forestry University of Science and Technology, 2011. [14] Abbasi D, Rouzbehan Y, Rezaei J. Effect of harvest date and nitrogen fertilization rate on the nutritive value of amaranth forage ( Amaranthus hypochondriacus ). Animal Feed Science and Technology, 2011, 171(1): 6-13. [15] Li T X, Ma G R, Wang C Q, et al . Mineral potassium activation in rhizospere soils and root exudates of grain amaranth. Chinese Journal of Soil Science, 2003, 34(1): 48-51. [16] Li T X, Ma G R, Zhang X Z. Root exudates of potassium-enrichment genotype grain amaranth and their activation on soil mineral potassium. Chinese Journal of Applied Ecology, 2006, 17(3): 368-372. [17] Hang P N, Qing D Z, Long H Y, et al . Effects of green manure-tobacco-paddy rice crop rotation to leaf tobacco yield quality and latter-stubble late rice yield. Chinese Agricultural Science Bulletin, 2010, 26(1): 103-108. [18] Shi Y, Ji Y, Jiang P C, et al . Studies on effects of green manure on quality of flue-cured tobacco transplanted in summer. China Tobacco Science, 2002, 23(3): 5-7. [19] Li L, Yang S C. Dynamic of nitrogen, phosphorus and potassium uptake by intercropped species in the spring wheat/soybean intercropping. Plant Nutrition and Fertilizer Science, 1999, 5(2): 163-171. [20] Li T X, Ma G R. Effect of grain amaranth and tobacco intercropping on quality and mineral nutritional composition of tobacco leaf. Journal of Soil and Water Conservation, 2004, 18(1): 138-140, 143. [21] Liu C X. The development of green manure of orchard soil management and fertilization (4). Northern Fruits, 2005, (5): 45-47. [22] Cao W D, Huang H X. Ideas on restoration and development of green manures in China. Soil and Fertilizer Sciences in China, 2009, (4): 1-3. [23] Martirosyan D M, Miroshnichenko L A, Kulakova S N, et al .Amaranth oil application for coronary heart disease and hypertension. Lipids in Health and Disease, 2007, 6: 1 [24] Lu Y Q, Huang D L, Hou S P. Hay production of Onbrychi viciaefolia and Medicago sativa and analysis of their nutrient dynamics. Pratacultural Science, 1989, 6(4): 57-62. [25] Montoya-Rodriguez A, Milan-Carrillo J, Dia V P, et al . Pepsin-pancreatin protein hydrolysates from extruded amaranth inhibit markers of atherosclerosis in LPS-induced THP-1 macrophages-like human cells by reducing expression of proteins in LOX-1 signaling pathway. Proteome Science, 2014, 12: 30. [26] Lei B, Wang C Q, Wu R J, et al . Effect of rich-potassium green manure amaranthus on dry matter accumulation, yield and quality of flue-cured tobacco. Journal of China Tobacco, 2011, (5): 69-73. [27] Zhang J J, Dou S, Jiang Y, et al . Dynamic changes of organic carbon contents in soil during period of decomposition of corn stalks . Journal of Jilin Agricultural University, 2000, 22(3): 67-72. [28] Gao X L, Wang P K. Characteristic Coarse Grain Industry Technical and Grains Booklet[M]. Shanxi: Northwest Agriculture and Forestry University of Science and Technology Press, 2009. [29] Deng F C. Eucalyptus young forest intercropping American grain amaranth suitability analysis in Guang-xi. Guangxi Tropical Agricultural Science, 2004, (4): 1-2. [30] Kalbitz K, Solinger S, Park J H, et al . Controls on the dynamics of dissolved organic matter in soils: a review. Soil Science, 2000, 165(4): 277-304. [31] Hu X S, Tang S M, Cao W D, et al . Effects of plantation and utilization of green manures during the summer fallow season on soil dissolved organic carbon and nitrogen, and inorganic nitrogen in greenhouse. Soil and Fertilizer Sciences, 2015, (3): 21-28. [32] Zhou J M, Chen H L, Tang D M, et al . Dynamic changes of dissolved organic matter in the soils amended with rice straw. Plant Nutrition and Fertilizer Science, 2008, 14(4): 678-684. [33] Bremer E, Kuikman P. Microbial utilization of 14 C[U] glucose in soil is affected by the amount and timing of glucose additions. Soil Biology and Biochemistry, 1993, 26(4): 511-517. [34] Marschner H. Mineral Nutrition of Higher Plants[M]. Australia: Elsevier, 2011. [35] Liu H X. Soil and Fertilizer[M]. Hefei: Anhui Science and Technology Press, 1987. [36] Ju X T, Liu X J, Zhang F S. Dynamics of various nitrogen forms in soil and nitrogen utilization under application urea and different organic materials. Journal of China Agricultural University, 2002, 7(3): 52-56. [37] Zhao Y Y, Cai L Q, Wang J, et al . Effects of different conservation tillage on amount and distribution of soil ammonifying bacteria, nitrobacteria and nitrogen-fixing bacteria. Acta Prataculturae Sinica, 2009, 18(4): 125-130. [38] Pan F X, Lu J W, Liu W, et al . Study on characteristics of decomposing and nutrients releasing of three kinds of green manure crops. Plant Nutrition and Fertilizer Science, 2011, 17(1): 216-223. [39] Li Z, Liu G S, Jing H X, et al . Effects of green manure application on the microbial biomass C and N contents and of the enzyme activity of tobacco-planting soil. Acta Prataculturae Sinica, 2011, 20(3): 225-232. [40] Wang Y, Liu G S. Nutrient release from green manures and its effect on quality of tobacco leaves. Acta Pedologica Sinica, 2006, 43(2): 273-279. [41] Chang S, Yan H F, Yang J T, et al . The comparison of growth dynamic and decomposing characteristics of two kinds of winter green manure. Soil and Fertilizer Sciences in China, 2015, (1): 101-105. [42] Zhou X F, Zhang Y C, Li Q Y, et al . Potassium status in barnyard manure, crop residue and green manure and their capability of supplying potassium to soil and crop. Acta Agriculturae Boreali-Sinica, 1999, 14(4): 83-87. [43] Xin G R, Yang Z Y. "Italian ryegrass-rice" rotation system Ⅶ Decomposition of ryegrass residue and the accompanying nutrient release in paddy fields. Acta Prataculturae Sinica, 2004, 13(3): 80-84. [44] Wang J Y, Cao W D, Guo Y L, et al . Potassium rich green manure research of grain amaranth. Soils and Fertilizers, 1999, (4): 36-39. [45] Liu Y Y, Li T X, Yu H Y, et al . Effect of interaction between manure and inorganic fertilizers on soil potassium efficiency in greenhouse soil. Chinese Journal of Soil Science, 2009, 40(5): 1139-1146. [46] Fan W J, Jie X L, Li Y T. Studies on dynamics of potassium in soil in wheat-maize rotated Chao soil region II. Effects of potash application on crop yield and dynamics of potassium in soil. Journal of Huazhong Agricultural University, 1999, 18(5): 427-430. [47] Zhou X F, Zhang Y C, Li Q Y. The K supplying capability and characteristics of organic fertilizer to soil. Chinese Journal of Eco-Agriculture, 2003, 11(2): 67-69. [48] Tan D S, Jin J Y, Huang S W, et al . Effect of long-term application of K fertilizer and wheat straw to soil on potassium fixation capacity of selected soils from northern China. Scientia Agricultura Sinica, 2010, 43(10): 2072-2079. [49] Zhang S M, Yan H, Zhou J M. Potash, wheat straw and horse dung in the role of soil potassium balance. Xie J C. The North of Potassium in the Soil Fertility and Its Management[M]. Beijing: China's Agricultural Science and Technology Press, 1995: 351-356. [50] Li J, Lu J, Li X, et al . Dynamics of potassium release and adsorption on rice straw residue. PloS One, 2014, 9(2): e90440. [51] Liu Z K, Wang S P, Han J G, et al . Decomposition and nutrients dynamics of plant litter and roots in Inner Mongolia steppe. Acta Prataculturae Sinica, 2005, 14(1): 24-30. [52] Wang W S, Wang W M, Zhang J Q, et al . Crop residue decomposition of farmland soil in Beijing. China Journal Soil Science, 1989, (3): 113-115, 122. [53] Saetre P, Stark J M. Microbial dynamics and carbon and nitrogen cycling following re-wetting of soils beneath two semi-arid plant species. Oecologia, 2005, 142(2): 247-260. [54] Marumoto T, Kaia H, Yoshidaa T, et al . Relationship between an accumulation of soil organic matter becoming decomposable due to drying of soil and microbial cell. Soil Science and Plant Nutrition, 1977, 1: 1-8. [55] Pizzeghello D, Zanella A, Carletti P, et al . Chemical and biological characterization of dissolved organic matter from silver fir and beech forest soils. Chemosphere, 2006, 65(2): 190-200. [56] Potthoff M, Dyckmans J, Flessaa H, et al . Dynamics of maize ( Zea mays L.) leaf straw mineralization as affected by the presence of soil and the availability of nitrogen. Soil Biology & Biochemistry, 2005, 37(7): 1259-1266. [57] Mueller T, Jensen L S, Nielsent N E. Turnover of carbon and nitrogen in a sandy loam soil following incorporation of chopped maize plants, barley straw and blue grass in the field. Soil Biology & Biochemistry, 1998, 30(5): 561-571. [58] 高菊生, 徐明岗, 董春华, 等. 长期稻-稻-绿肥轮作对水稻产量及土壤肥力的影响. 作物学报, 2013, 34(2): 343-349. [59] Mclaren A D. 土壤生物化学[M]. 闺九康, 译. 北京: 农业出版社, 1984. [60] 把余玲, 田霄鸿, 万丹, 等. 玉米植株不同部位还田土壤活性碳,氮的动态变化. 植物营养与肥料学报, 2013, 19(5): 1166-1173. [61] 李子双, 廉晓娟, 王薇, 等. 我国绿肥的研究进展. 草业科学, 2013, 30(7): 1135-1140. [62] 孙艳茹, 石屹, 陈国军, 等. PEG模拟干旱胁迫下8种绿肥作物萌发特性与抗旱性评价. 草业学报, 2015, 24(3): 89-98. [63] 徐静, 张锡洲, 李廷轩, 等. 野生大麦对土壤磷吸收及其酸性磷酸酶活性的基因型差异. 草业学报, 2015, 24(1): 88-98. [64] 梁郭富. 大力发展高钾绿肥籽粒苋缓解我省钾源短缺问题的新途径. 土壤农化通报, 1995, (10): 29-32. [65] 孙颖. 绿肥对土壤生物学特征的影响[D]. 杨凌: 西北农林科技大学, 2011. [66] 李廷轩, 马国瑞, 王昌全, 等. 籽粒苋根际土壤及根系分泌物对矿物态钾的活化作用. 土壤通报, 2003, 34(1): 48-51. [67] 李廷轩, 马国瑞, 张锡洲. 富钾基因型籽粒苋主要根系分泌物及其对土壤矿物态钾的活化作用. 应用生态学报, 2006, 17(3): 368-372. [68] 黄平娜, 秦道珠, 龙怀玉, 等. 绿肥-烟-稻轮作与烟叶产量品质及后茬晚稻产量效应. 中国农学通报, 2010, 26(1): 103-108. [69] 石屹, 计玉, 姜鹏超, 等. 富钾绿肥籽粒苋对夏烟烟叶品质的影响研究. 中国烟草科学, 2002, 23(3): 5-7. [70] 李隆, 杨思存. 春小麦大豆间作条件下作物养分吸收积累动态的研究. 植物营养与肥料学报, 1999, 5(2): 163-171. [71] 李廷轩, 马国瑞. 籽粒苋 烟草间作对烟叶部分矿质元素含量及品质的影响. 水土保持学报, 2004, 18(1): 138-140, 143. [72] 刘成先. 果园土壤管理与施肥(四)发展绿肥. 北方果树, 2005, (5): 45-47. [73] 曹卫东, 黄鸿翔. 关于我国恢复和发展绿肥若干问题的思考. 中国土壤与肥料, 2009, (4): 1-3. [74] 陆伊奇, 晃德林, 侯淑萍. 美国籽粒苋引种及饲喂奶牛试验初报. 草业科学, 1989, 6(4): 57-62. [75] 雷波, 王昌全, 伍仁军, 等. 富钾绿肥籽粒苋对烤烟干物质积累和产量,质量的影响. 中国烟草学报, 2011, (5): 69-73. [76] 张晋京, 窦森, 江源, 等. 玉米秸秆分解期间土壤中有机碳数量的动态变化研究. 吉林农业大学学报, 2000, 22(3): 67-72. [77] 高小丽, 王鹏科. 特色杂粮产业技术问答谷类分册[M]. 陕西: 西北农林科技大学出版社, 2009. [78] 邓福春. 广西桉树幼林间作美国籽粒苋适宜性分析. 广西热带农业, 2004, (4): 1-2. [79] 胡晓珊, 唐树梅, 曹卫东, 等. 温室夏闲季种植翻压绿肥对土壤可溶性有机碳氮及无机氮的影响. 中国土壤与肥料, 2015, (3): 21-28. [80] 周江敏, 陈华林, 唐东民, 等. 秸秆施用后土壤溶解性有机质的动态变化. 植物营养与肥料学报, 2008, 14(4): 678-684. [81] 刘怀旭. 土壤肥料[M]. 合肥: 安徽科学技术出版社, 1987. [82] 巨晓棠, 刘学军, 张福锁. 尿素配施有机物料时土壤不同氮素形态的动态及利用. 中国农业大学学报, 2002, 7(3): 52-56. [83] 赵有翼, 蔡立群, 王静, 等. 不同保护性耕作措施对三种土壤微生物氮素类群数量及其分布的影响. 草业学报, 2009, 18(4): 125-130. [84] 潘福霞, 鲁剑巍, 刘威, 等. 三种不同绿肥的腐解和养分释放特征研究. 植物营养与肥料学报, 2011, 17(1): 216-223. [85] 李正, 刘国顺, 敬海霞, 等. 翻压绿肥对植烟土壤微生物量及酶活性的影响. 草业学报, 2011, 20(3): 225-232. [86] 王岩, 刘国顺. 绿肥中养分释放规律及对烟叶品质的影响. 土壤学报, 2006, 43(2): 273-279. [87] 常帅, 闫慧峰, 杨举田, 等. 两种禾本科冬绿肥生长规律及腐解特征比较. 中国土壤与肥料, 2015, (1): 101-105. [88] 周晓芬, 张彦才, 李巧云, 等. 厩肥,秸秆和绿肥的含钾状况及其对土壤和作物钾素的供应能力. 华北农学报, 1999, 14(4): 83-87. [89] 辛国荣, 杨中艺. "黑麦草 水稻"草田轮作系统研究Ⅶ:黑麦草残留物的田间分解及营养元素的释放动态. 草业学报, 2004, 13(3): 80-84. [90] 王隽英, 曹卫东, 郭永兰, 等. 富钾绿肥籽粒苋的研究. 土壤肥料, 1999, (4): 36-39. [91] 刘媛媛, 李廷轩, 余海英, 等. 有机无机肥交互作用对设施土壤钾素变化的影响. 土壤通报, 2009, 40(5): 1139-1146. [92] 范闻捷, 介晓磊, 李有田. 潮土区小麦玉米轮作周期内土壤钾素的动态研究Ⅱ.施钾对作物产量及土壤钾素动态的影响. 华中农业大学学报, 1999, 18(5): 427-430. [93] 周晓芬, 张彦才, 李巧云. 有机肥料对土壤钾素供应能力及其特点研究. 中国生态农业学报, 2003, 11(2): 67-69. [94] 谭德水, 金继运, 黄绍文, 等. 长期施钾及小麦秸秆还田对北方典型土壤固钾能力的影响. 中国农业科学, 2010, 43(10): 2072-2079. [95] 张漱茗, 阎华, 周景明. 钾肥,麦秸,马粪在土壤钾素平衡中的作用. 见: 谢建昌. 北方土壤钾素肥力及其管理[M]. 北京: 中国农业科技出版社, 1995: 351-356. [96] 刘忠宽, 汪诗平, 韩建国, 等. 内蒙古温带典型草原植物凋落物和根系的分解及养分动态的研究. 草业学报, 2005, 14(1): 24-30. [97] 王文山, 王维敏, 张镜清, 等. 农作物残体在北京农田土壤中的分解. 土壤通报, 1989, (3): 113-115, 122. |