Welcome to Acta Prataculturae Sinica ! Today is Share:

Acta Prataculturae Sinica ›› 2016, Vol. 25 ›› Issue (10): 40-47.DOI: 10.11686/cyxb2015585

• Orginal Article • Previous Articles     Next Articles

Response of soil aggregate stability and soil organic carbon fractions to different growth years of alfalfa

LUO Zhu-Zhu1, 2, LI Ling-Ling2, NIU Yi-Ning2, CAI Li-Qun1, 2, ZHANG Ren-Zhi2, XIE Jun-Hong2   

  1. 1.College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China;
    2.Gansu Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
  • Received:2015-12-31 Online:2016-10-20 Published:2016-10-20

Abstract: This study used dry and wet sieving methods to investigate the distribution and stability of soil aggregates, their mean weight diameter (MWD) and the percentage of aggregate destruction (PAD) in land that had been planted with alfalfa (Medicago sativa) for a range of different growth years (3, 10, and 12 years), and compares these results with those for cropland from a long-term experiment. The relationships between soil aggregates and both stability and soil organic carbon fractions were also studied. The results showed that soil aggregates had a “V”-shaped distribution under the different treatments. With dry sieving, the aggregates primarily involved small (<0.25 mm) and large (>5 mm) particle sizes, while with wet sieving they were dominated by <0.25 mm particles. The MWD of the alfalfa soils was significantly higher than that of the cropland soils at 0-10 cm depth. The PAD of alfalfa soils was significantly lower than that of cropland and it decreased with the increasing number of alfalfa growth years. Soil organic carbon fractions diverged greatly in the different treatments. The order of TOC (total organic carbon), HFOC (heavy fraction organic carbon) and ROOC (readily oxidized organic carbon) in 0-10 cm topsoil was 12 yrs>10 yrs>cropland>3 yrs, indicating that improvement in the organic carbon of alfalfa field topsoils is associated with the number of growth years. Correlation analysis returned the highest coefficients between water-stable aggregates and LFOC (light fraction organic carbon) and ROOC, suggesting that LFOC and ROOC rather than TOC play a vital role in maintaining soil aggregate stability on the Loess Plateau.