[1] Zheng Y F, Wei J H, Leng K, et al . Research advances in resource chemistry and utilization of genus Glycyrrhiza . Modern Chinese Medicine, 2015, 15(10): 1096-1108. [2] Liu Y Y, Liu C S, Zeng B F, et al . Research progress on germplasm resources of Glycyrrhizae Radix et Rhizoma . Chinese Traditional and Herbal Drugs, 2013, 44(24): 3593-3598. [3] Zhu X M, Di Y T, Peng S L, et al . Chemical constituents from root of Glycyrrhiza uralensis . Chinese Traditional and Herbal Drugs, 2003, 34(3): 198-201. [4] Yang S H, Liu X F, Guo D A, et al . Effects of media and culture conditions on callus growth and flavonoid production in Glycyrrhiza uralensis Calli. Journal of Jilin Agricultural University, 2005, 27(3): 289-292. [5] Huo Y Q, Ge S J, Meng Y J, et al . The progress of tissue culture of the Chinese liquorice ( Glycyrrhiza uralensis Fisch). Chinese Agricultural Science Bulletin, 2005, 121(9): 64-66, 78. [6] Yang R, Wang L Q, Liu Y. Research progress on tissue culture of Glycyrrhizae Radix et Rhizoma . Chinese Traditional and Herbal Drugs, 2014, 45(6): 1796-1802. [7] Yang S H, Liu X F, Shen X, et al . Ri plasmid transformation of Glycyrrhiza uralensis and effects of some factors on growth of hairy roots. China Journal of Chinese Materia Medica, 2006, 31(11): 875-878. [8] Chen Z L, Liang Y L, Xianyu L Y, et al . Agrobacterium tumefaciens-mediated genetic transformation of Glycyrrhiza inflata callus. Biotechnology, 2014, 24(2): 64-68. [9] Li X X, Meng Y J, Luo W J, et al . Establishment of genetic transformation system of Glycyrrhiza uralensis Fisch. based on GFP marker. Crops, 2014, 4: 52-58. [10] Ji Q L. Regenerated plantlet from salt-tolerant callus of Glycyrrhiza uralensis . Chinese Traditional and Herbal Drugs, 2006, 37(2): 265-268. [11] Ge S J, Li G M, Ma C Y, et al . Establishment of micropropagation system of Glycyrrhiza uralensis . Acta Prataculturae Sinica, 2007, 16(6): 107-112. [12] Fu C H, Lei C, Deng H, et al . In vitro regeneration of Glycyrrhiza hypocotyl . Journal of Huazhong Agricultural University, 2007, 26(2): 239-242. [13] Wu R, Zhang S Z. Green fluorescent protein and its application in plant molecular biology. Molecular Plant Breeding, 2005, 3(2): 240-244. [14] Kim C K, Chung J D, Park S H, et al . Agrobacterium tumefaciens -mediated transformation of Rosa hybrid using the green fluorescent protein ( GFP ) gene. Plant Cell Tissue and Organ Culture, 2004, 78: 107-111. [15] Joseph S, Rusell D W. Molecular Cloning: A Laboratory Manual[M]. 3rd Edition. Beijing: Science Press, 2002: 487-510. [16] Liu J P, Zheng C M. Application of in vitro selection and somaclonal variation in improvement of disease resistance. Hereditas, 2002, 24(5): 617-630. [17] Liu J P. Selection of gene receptor in plant transformation. Agriculture & Technology, 2003, 23(4): 97-100. [18] Lei C. Rapid propagation of medicinal Glycyrrhiza in vitro . Pharmaceutical Biotechnology, 2012, 19(1): 49-51. [1] 郑云枫, 魏娟花, 冷康, 等. 甘草属 Glycyrrhiza L.植物资源化学及利用研究进展. 中国现代中药, 2015, 15(10): 1096-1108. [2] 刘洋洋, 刘春生, 曾斌芳, 等. 甘草种质资源研究进展. 中草药, 2013, 44(24): 3593-3598. [3] 朱绪民, 邸迎彤, 彭树林, 等. 乌拉尔甘草中的化学成分. 中草药, 2003, 34(3): 198-201. [4] 杨世海, 刘晓峰, 果德安, 等. 培养基及培养条件对甘草愈伤组织生长和黄酮类化合物合成的影响. 吉林农业大学学报, 2005, 27(3): 289-292. [5] 霍云谦, 葛淑俊, 孟义江, 等. 中国甘草的组织培养的研究进展. 中国农学通报, 2005, 121(9): 64-66, 78. [6] 杨瑞, 王礼强, 刘颖. 甘草组织培养的研究进展. 中草药, 2014, 45(6): 1796-1802. [7] 杨世海, 刘晓峰, 沈昕, 等. 甘草Ri质粒转化及不同理化因子对甘草毛状根生长的影响. 中国中药杂志, 2006, 31(11): 875-878. [8] 陈子龙, 梁玉玲, 鲜于梁艳, 等. 农杆菌介导的胀果甘草愈伤组织遗传转化. 生物技术, 2014, 24(2): 64-68. [9] 李兴欣, 孟义江, 罗婉娇, 等. 基于绿色荧光标记的甘草遗传转化体系的建立. 作物杂志, 2014, 4: 52-58. [10] 计巧灵. 甘草耐盐性愈伤组织的诱导及植株再生研究. 中草药, 2006, 37(2): 265-268. [11] 葛淑俊, 李广敏, 马峙英, 等. 乌拉尔甘草组培再生体系的研究. 草业学报, 2007, 16(6): 107-112. [12] 付春华, 雷呈, 邓慧, 等.甘草下胚轴离体再生体系的建立. 华中农业大学学报, 2007, 26(2): 239-242. [13] 吴瑞, 张树珍. 绿色荧光蛋白及其在植物分子生物学中的应用. 分子植物育种, 2005, 3(2): 240-244. [16] 刘进平, 郑成木. 体外选择和体细胞无性系变异在抗病育种中的应用. 遗传, 2002, 24(5): 617-630. [17] 刘进平. 植物遗传转化中基因受体的选择. 农业与技术, 2003, 23(4): 97-100. [18] 雷呈. 药用甘草离体快速繁殖体系的建立. 药物生物技术, 2012, 19(1): 49-51. |