[1]Jaleel C A, Riadh K, Gopi R, et al. Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiologiae Plantarum, 2009, 31(3): 427-436. [2] Baudouin E. The language of nitric oxide signalling. Plant Biology (Stuttgart, Germany), 2011, 13(2): 233-242. [3] Besson-Bard A, Pugin A, Wendehenne D. New insights into nitric oxide signaling in plants. Annual Review of Plant Biology, 2008, 59: 21-39. [4] Siddiqui M H, Al-Whaibi M H, Basalah M O. Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma, 2011, 248(3): 447-455. [5] Ahlfors R, Brosché M, Kollist H, et al. Nitric oxide modulates ozone-induced cell death, hormone biosynthesis and gene expression in Arabidopsis thaliana. Plant Journal for Cell & Molecular Biology, 2009, 58(1): 1-12. [6] B?hm F M L Z, Ferrarese M D L L, Zanardo D I L, et al. Nitric oxide affecting root growth, lignification and related enzymes in soybean seedlings. Acta Physiologiae Plantarum, 2010, 32(6): 1039-1046. [7] Jorge L J, José L. Nitric oxide regulates DELLA content and PIF expression to promote photomorphogenesis in Arabidopsis. Plant Physiology, 2011, 156(3): 1410-1423. [8] Mendez-Bravo A. Nitric oxide is involved in alkamide-induced lateral root development in Arabidopsis. Plant & Cell Physiology, 2010, 51(10): 1612-1626. [9] Wilson I D, Neill S J, Hancock J T. Nitric oxide synthesis and signaling in plants. Plant Cell & Environment, 2008, 31(5): 622-631. [10] Tanou G J C, Rajjou L, Arc E, et al. Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant Journal, 2009, 60(5): 795-804. [11] Xu Y, Wei X H, Li B B, et al. Effects of exogenous nitric oxide on seed germination and seedling oxidative damage in Medicago sativa under NaCl stress. Acta Prataculturae Sinica, 2013, 22(5): 145-153. [12] Hao G P, Xing Y, Zhang J H. Role of nitric oxide dependence on nitric oxide synthase-like activity in the water stress signaling of maize seedling. Journal of Integrative Plant Biology, 2008, 50(4): 435-442. [13] Zhang Z, Wang H, Wang X, et al. Nitric oxide enhances aluminum tolerance by affecting cell wall polysaccharides in rice roots. Plant Cell Reports, 2011, 30(9): 1701-1711. [14] Zhao M, Chen L, Zhang L, et al. Nitric reductase-dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiology, 2009, 151(2): 755-767. [15] Zhang Y Y, Liu Y L. Source and function of nitric oxide in plants.Acta Botanica Boreali-Occidentalia Sinica, 2004, 24(5): 921-929. [16] Kawabata A, Umeda N, Takagi H. L-arginine exerts a dual role in nociceptive processing in the brain: involvement of the kyotorphin-Met-enkephalin pathway and NO-cyclic GMP pathway. British Journal of Pharmacology, 1993, 109(1): 73-79. [17] Ozkan D, Kara P, Kerman K, et al. DNA and PNA sensing on mercury and carbon electrodes by using methylene blue as an electrochemical label. Bioelectrochemistry, 2002, 58(1): 119-126. [18] Lamotte O, Courtois C, Dobrowolska G, et al. Mechanisms of nitric-oxide-induced increase of free cytosolicCa2+concentration in Nicotiana plumbaginifolia cells. Free Radical Biology & Medicine, 2006, 40(8): 1369-1376. [19] Garcia-Brugger A, Lamotte O, Vandelle E, et al. Early signaling events induced by elicitors of plant defenses. Molecular Plant-Microbe Interactions, 2006, 19(7): 711-724. [20] Liang J, Yan C L, Li Y H, et al. Effect of Ca(NO3)2 on phyecological characteristics in Casuarina equisetifolia cutting seedlings under NaCl stress. Acta Ecologica Sinica, 2004, 24(5): 1073-1077. [21] Liu H X, Shen X R, Guo Z G. Effect of silicon addition on seed germination and seedling growth of alfalfa. Acta Prataculturae Sinica, 2011, 20(1): 155-160. [22] Li B B, Wei X H, Xu Y. The cause of Gentian straminea Maxim. seeds dormancy and the methods for its breaking. Acta Ecologica Sinica, 2013, 15(15): 4631-4638. [23] Jiang Y B, Zheng Q H, Wang C Z, et al. Effect of ultradrying storage on vigo and antioxidase activity of Cichoriun intybusseeds. Acta Prataculturae Sinica, 2009, 18(5): 93-97. [24] Li H S. Principle and Technology of Plant Physiology and Biochemistry Experiment [M]. Beijing: Higher Education Press, 2000. [25] Zou Q. Guide of Plant Physiological Experiments [M]. Beijing: China Agricultural Press, 2000: 62-174. [26] Yu M, Zhou S B, Wu X Y, et al. Dormancy break approaches and property of dormant seeds of wild Cryptotaenia japonica. Acta Ecologica Sinica, 2012, 4(4): 1347-1354. [27] Wang A G, Luo G H. Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants. Plant Physiology Communications, 1990, 6(6): 55-57. [28] Ji X, Liu G, Liu Y, et al. The bZIP protein from Tamarix hispida, ThbZIP1, is ACGT elements binding factor that enhances abiotic stress signaling in transgenic Arabidopsis. BMC Plant Biology, 2013, 13(3): 1-13. [29] Jie S, Fu X Z, Peng T, et al. Spermine pretreatment confers dehydration tolerance of citrus in vitro plants via modulation of antioxidative capacity and stomatal response. Tree Physiology, 2010, 30(7): 914-922. [30] Aebi H. Catalase in vitro. Methods in Enzymology, 1984, 105: 121-126. [31] Liu W Y, Yang H W, Wei X H, et al. Effect of exogenous nitric oxide on seed germination, physiological characteristics and active oxygen metabolism of Medicago truncatula under NaCl stress. Acta Prataculturae Sinica, 2015, 24(2): 85-95. [32] Fan Q J, Liu J H. Nitric oxide is involved in dehydration/drought tolerance in Poncirus trifoliata seedlings through regulation of antioxidant systems and stomatal response. Plant Cell Reports, 2012, 31(1): 145-154. [33] Cai X Y, Chen X D, Li C Z, et al. Effects of exogenousCa2+on the seed germination of Koelreuteria paniculatain limestone area of Southwest China under drought stress. Chinese Journal of Applied Ecology, 2013, 24(5): 1341-1346. [34] Li C Z, Wang G X. Interactions between reactive oxygen species, ethylene and polyamines in leaves of Glycyrrhiza inflata seedlings under root osmotic stress. Plant Growth Regulation, 2004, 42(1): 55-60. [35] Zhao L L, Wang P C, Chen C, et al. Effects of exogenous calcium on the seed germination of Lespedeza bicolor under drought stress. Acta Agrestia Sinica, 2015, 23(1): 120-124. [36] Wang X Y, Shen W B, Xu L L. Exogenous nitric oxide alleviates osmotic stress-induced membrane lipid peroxidation in wheat seedling leaves. Journal of Plant Physiology and Molecular Biology, 2004, 30(2): 195-200. [37] Gao H B, Chen G L, Han L H, et al. Calcium influence on chilling resistance of grafting eggplant seedlings. Journal of Plant Nutrition, 2005, 27(8): 1327-1339. [11] 徐严, 魏小红, 李兵兵, 等. 外源NO对NaCl胁迫下紫花苜蓿种子萌发及幼苗氧化损伤的影响. 草业学报, 2013, 22(5): 145-153. [15] 张艳艳, 刘友良. 一氧化氮在植物体内的来源和功能. 西北植物学报, 2004, 24(5): 921-929. [20] 梁洁, 严重玲, 李裕红, 等. Ca(NO3)2对NaCl胁迫下木麻黄扦插苗生理特征的调控. 生态学报, 2004, 24(5): 1073-1077. [21] 刘慧霞, 申晓蓉, 郭正刚. 硅对紫花苜蓿种子萌发及幼苗生长发育的影响. 草业学报, 2011, 20(1): 155-160. [22] 李兵兵, 魏小红, 徐严. 麻花秦艽种子休眠机理及其破除方法. 生态学报, 2013, 15(15): 4631-4638. [23] 姜义宝, 郑秋红, 王成章, 等. 超干贮藏对菊苣种子活力与抗氧化性的影响. 草业学报, 2009, 18(5): 93-97. [24] 李合生. 植物生理生化实验原理和技术 [M]. 北京: 高等教育出版社, 2000. [25] 邹琦. 植物生理学实验指导 [M]. 北京: 中国农业出版社, 2000: 62-174. [26] 喻梅, 周守标, 吴晓艳, 等. 野生鸭儿芹种子休眠特性及破除方法. 生态学报, 2012, 4(4): 1347-1354. [27] 王爱国, 罗广华. 植物的超氧物自由基与羟胺反应的定量关系. 植物生理学报, 1990, 6(6): 55-57. [31] 刘文瑜, 杨宏伟, 魏小红, 等.外源NO调控盐胁迫下蒺藜苜蓿种子萌发生理特性及抗氧化酶的研究. 草业学报, 2015, 24(2): 85-95. [33] 蔡喜悦, 陈晓德, 李朝政, 等. 干旱胁迫下外源钙对石灰岩地区复羽叶栾树种子萌发的影响. 应用生态学报, 2013, 24(5): 1341-1346. [35] 赵丽丽, 王普昶, 陈超, 等. 干旱胁迫下外源钙对二色胡枝子种子萌发的影响. 草地学报, 2015, 23(1): 120-124. [36] 王宪叶, 沈文飚, 徐朗莱. 外源一氧化氮对渗透胁迫下小麦幼苗叶片膜脂过氧化的缓解作用. 植物生理与分子生物学学报, 2004, 30(2): 195-200. |