Welcome to Acta Prataculturae Sinica ! Today is Share:

Acta Prataculturae Sinica ›› 2017, Vol. 26 ›› Issue (1): 72-80.DOI: 10.11686/cyxb2016087

Previous Articles     Next Articles

Effects of different cutting height and frequency combinations on growth and production performance of hybrid giant napie

GUO Xiao1, DENG Hong-Yu1, HU Hua-Feng1, LI Jian-Ping1, HUANG An-Qun1, BAI Chuang-Jun2, TANG Jun2   

  1. 1. Zhengzhou Key Laboratory of Ruminant Nutrition, Henan Animal Husbandry and Economy Institute, Zhengzhou 450046, China;
    2.Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Danzhou 571737, China;
  • Received:2016-03-03 Online:2017-01-20 Published:2017-01-20

Abstract: This experiment was designed to explore the effects of cutting regime on growth characters and production performance of hybrid giant napie (Pennisetum sinense) planted on Yellow River flood plain, and consisted of a factorial combination of four cutting heights (cutting at 5,10,15 and 20 cm) and 4 cutting frequencies(cutting interval 30, 40, 60 and 120 d), to address some difficult problems with this species, including short utilization period, low yield, poor forage quality, and a high incidence of lodging with this cropplanted in Yellow River flood plain under continental climate. The cutting regime had a significant effect on the growth and production of hybrid giant napie. Multiple cutting within a growing season decreased stem to leaf ratio (S/L ratio) and leaf area index (LAI), while optimal cutting (cutting at 15-20 cm height and 60 d intervals) raised fresh biomass to dry matter ratio (F/D ratio), tiller density, and growth rate, compared to other treatments. More frequent and severe defoliation (cutting at 5 cm height and 30 d intervals) raised F/D ratio and number of single plant tillerings, noticeably decreased incidence of lodging, but decreased re-growth rate which was unfavourable to sustainable and efficient production of forage. The more favourable cutting regimes increased forage yield by 14.3%-17.3% compared to that (cutting only at 120 d cutting interval) and the annual forage yield reached 32 t DM/ha. Furthermore, optimal cutting decreased lodging, reducing losses of energy and nutrients at harvest. In conclusion, optimal cutting height and frequency, together with appropriate irrigation and fertilizer regimes were important to achievement of production potential, eliminating unnecessary losses in yield and forage quality.