[1] Wang Q Z, Cui J. Use potential of a forage chicory: II utilization value and exploitive potential. Pratacultral Science, 2010, 27(2): 150-156. [2] Luo Y, Bai S Q, Peng Y, et al . Research progress on germplasm resources of Cichorium intybus . Pratacultural Science, 2010, 27(7): 123-132. [3] Wu G, Poethig R S. Temporal regulation of shoot development in Arabidopsis thaliana by miR 156 and its target SPL 3. Development, 2006, 133(18): 3539-3547. [4] Chuck G, Cigan A M, Saeteurn K, et al . The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nature Genetics, 2007, 39(4): 544-549. [5] Xie K, Wu C, Xiong L. Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA 156 in rice. Plant Physiology, 2006, 142(1): 280-293. [6] Yu X, Wang H, Lu Y, et al . Identification of conserved and novel microRNAs that are responsive to heat stress in Brassica rapa . Journal of Experimental Botany, 2012, 63(2): 1025-1038. [7] Xin M, Yu W, Yao Y, et al . Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat ( Triticum aestivum L). BMC Plant Biology, 2010, 10(1): 107-113. [8] Li C H, Shu I L, Arthur C S, et al . Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Laser & Optoelectronics Progress, 2009, 151(4): 2120-2132. [9] Wei S, Yu B, Gruber M Y, et al . Enhanced seed carotenoid levels and branching in transgenic Brassica napus expressing the Arabidopsis miR 156 b gene. Journal of Agricultural and Food Chemistry, 2010, 58(17): 9572-9578. [10] Chuck G S, Tobias C, Sun L, et al . Overexpression of the maize Corngrass 1 microRNA prevents flowering, improves digestibility, and increases starch content of switchgrass. Proceedings of the National Academy of Sciences, 2011, 108(42): 17550-17555. [11] Fu C, Sunkar R, Zhou C, et al . Overexpression of miR 156 in switchgrass ( Panicum virgatum L.) results in various morphological alterations and leads to improved biomass production. Plant Biotechnology Journal, 2012, 10(4): 443-452. [12] Abedon B G, Hatfield R D, Tracy W F. Cell wall composition in juvenile and adult leaves of maize ( Zea mays L). Journal of Agricultural and Food Chemistry, 2006, 54(11): 3896-3900. [13] Maroufi A, Karimi M, Mehdikhanlou K, et al . Regeneration ability and genetic transformation of root type chicory ( Cichorium intybus var. sativum ). African Journal of Biotechnology, 2016, 11(56): 11874-11886. [14] Yucesan B, Turker A U, Gurel E. TDZ-induced high frequency plant regeneration through multiple shoot formation in witloof chicory ( Cichorium intybus L). Plant Cell, Tissue and Organ Culture, 2007, 91(3): 243-250. [15] Zhao Y W. Cloning of atnhx 1 and hvbadh 1 Genes and Transformation of 3 Plant Species[D]. Xi’an: Northwest University, 2007. [16] Zhao Y W, Wang Y J, Bu H Y, et al . Transformation of Cichorium intybus with the AtNHX 1 gene and salinity tolerance of the transformants. Acta Prataculturae Sinica, 2009, 18(3): 103-109. [17] Cheng L M, Sun Y, Zhang L J, et al . Characterize the drought resistance of ascorbate peroxidase gene ( APX ) transgenic Cichorium intybus . Acta Agriculturae Boreali-Occidentalis Sinica, 2013, 22(5): 124-130. [18] Li X, Yu E, Fan C, et al . Developmental, cytological and transcriptional analysis of autotetraploid Arabidopsis . Planta, 2012, 236(2): 579-596. [19] Varkonyi-Gasic E, Wu R, Wood M, et al . Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs . Plant Methods, 2007, 3: 1-12. [20] Jakob K, Zhou F, Paterson A H. Genetic improvement of C 4 grasses as cellulosic biofuel feedstocks. In Vitro Cellular & Developmental Biology Plant, 2009, 45(3): 291-305. [21] Shikata M, Koyama T, Mitsuda N, et al . Arabidopsis SBP-box genes SPL 10, SPL 11 and SPL 2 control morphological change in association with shoot maturation in the reproductive phase. Plant and Cell Physiology, 2009, 50(12): 2133-2145. [22] Poethig R S. Small RNAs and developmental timing in plants. Current Opinion in Genetics & Development, 2009, 19(4): 374-378. [23] Wang J W, Czech B, Weigel D. miR 156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana . Cell, 2009, 138(4): 738-749. [1] 王佺珍, 崔健. 牧草菊苣及其利用潜力 Ⅱ利用价值和开发潜力. 草业科学, 2010, 27(2): 150-156. [2] 罗燕, 白史且, 彭燕, 等. 菊苣种质资源研究进展. 草业科学, 2010, 27(7): 123-132. [15] 赵宇玮. atnhx 1 和 hvbadh 1基因的克隆及对三种植物的转化研究[D]. 西安: 西北大学, 2007. [16] 赵宇玮, 王英娟, 步怀宇, 等. AtNHX 1基因对菊苣的转化和耐盐性研究. 草业学报, 2009, 18(3): 103-109. [17] 程林梅, 孙毅, 张丽君, 等. 转抗坏血酸过氧化物酶基因( APX )菊苣抗旱相关生理特性. 西北农业学报, 2013, 22(5): 124-130. |