Welcome to Acta Prataculturae Sinica ! Today is Share:

Acta Prataculturae Sinica ›› 2017, Vol. 26 ›› Issue (3): 214-225.DOI: 10.11686/cyxb2016146

• Orignal Article • Previous Articles     Next Articles

Research progress in water uptake models by plant roots

WANG Yu-Yang1, 2, CHEN Ya-Peng1, *   

  1. 1.State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
    2.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2016-04-05 Revised:2016-06-13 Online:2017-03-20 Published:2017-03-20

Abstract: The uptake of water by roots is the beginning of water transport within a plant, with such uptake directly controlling the amount of water available for transporting and, as a result, strongly affecting the life of the plant. Research on this uptake is thus not only a key to understanding the process of water transfer in the soil-plant-atmosphere continuum, but also an important topic for interdisciplinary research in such areas as hydrology, climate, soil, agriculture and ecology. Models for root uptake of water provide a numerical tool for quantitatively understanding this plant process. The establishment of a suitable model will provide not only a basic tool for estimating the amount of water absorbed but will also help to discover the water sources and requirements of plants. It can thus assist the development of effective agricultural water management programs, with far-reaching significance for restoring vegetation in extremely arid regions. In this paper, we review the development of models for root uptake of water, sum up the mechanisms identified and classify the models into different types at macroscopic and microscopic scales. We analyze the macroscopic models in detail, including Ohm’s law model, Feddes model, Transpiration segment model, Hybrid model, Compensatory root uptake water model and the Matric flux potential model, which are widely used in practical experiments. We illustrate the application range and discuss the limitations of existing models. We conclude with three suggestions for future research: 1) the establishment of dynamic models for root uptake of water, 2) the combination of microscopic and macroscopic models, and 3) the development of models for trees and herbages.