Welcome to Acta Prataculturae Sinica ! Today is Share:

Acta Prataculturae Sinica ›› 2017, Vol. 26 ›› Issue (9): 104-112.DOI: 10.11686/cyxb2017058

Previous Articles     Next Articles

Enhanced tolerance of Arabidopsis over expressing Fa14-3-3C from tall fescue (Festuca arundinacea) to low-nitrogen stress

LI Xiao-Dong, WU Jia-Hai, SUN Fang, CHEN Guang-Ji, WANG Xiao-Li*   

  1. Guizhou Academy of Agriculture Science;Guizhou Institute of Prataculture, Guiyang 550006, China
  • Received:2017-02-20 Revised:2017-03-31 Online:2017-09-20 Published:2017-09-20

Abstract: Nitrogen is essential for the growth and development of plants, especially gramineous crop plants. In this study, the full-length Fa14-3-3C gene was obtained by rapid amplification of cDNA ends from leaves of tall fescue (Festuca arundinacea). Subcellular localization analyses showed that Fa14-3-3C-GFP was mainly located in the cytoplasm and cell membrane when it was transiently expressed in tobacco epidermal cells. Fa14-3-3C was transferred into Arabidopsis, and three single-copy T-DNA insertion strains showing a 3∶1 hygromycin resistance segregation ratio were obtained. When wild-type and Fa14-3-3C overexpression strains were subjected to nitrogen deficiency, the root fresh weight was higher in strains OE-1 and OE-3 (but not OE-2) than in wild type. Quantitative real-time PCR analyses showed that Fa14-3-3C was highly expressed in OE-1 and OE-3, but not in OE-2, reflecting a dosage effect on the response to nitrogen deficiency. Dynamic analyses of the root growth of wild-type and Fa14-3-3C overexpression strains in nitrogen-deficient medium revealed that OE-1 showed a dramatic advantage over wild-type plants at the early stage of nitrogen deficiency. This was mainly due to compensation growth to alleviate the negative effects of low-nitrogen stress in the OE-1 strain. Therefore, we have cloned a candidate gene conferring resistance to low-nitrogen stress, and verified its molecular function in the model plant Arabidopsis. These results are fundamentally important for breeding crop plants resistant to low-nitrogen stress via genetic engineering.