[1] Raun W R, Johnson G V. Improving nitrogen use efficiency for cereal production. Agronomy Journal, 1999, 91(3): 357-363. [2] Hodge A, Robinson D, Fitter A. Are microorganisms more effective than plants at competing for nitrogen. Trends in Plant Science, 2000, 5(7): 304-308. [3] Wang X L, Liu Z S, Mou Q, et al . Genetic diversity of Festuca arundinaces detected by RAPD. Acta Prataculturae Sinica, 2007, 16(4): 82-86. 王小利, 刘正书, 牟琼, 等. 高羊茅遗传多样性RAPD分析. 草业学报, 2007, 16(4): 82-86. [4] Li X D, Shu J H, Yu E R, et al . Proteomic analysis of nitrogen stress responsive proteins in the leaves of tall fescue. Acta Prataculturae Sinica, 2016, 25(3): 67-76. 李小冬, 舒健虹, 于二汝, 等. 高羊茅在低氮胁迫下的蛋白组学分析. 草业学报, 2016, 25(3): 67-76. [5] Li X D, Shu J H, Wang Q, et al . Auxin signaling pathways respond to low nitrogen stress as revealed by metabolomics profiling analysis in tall fescue. Acta Prataculturae Sinica, 2016, 25(9): 64-73. 李小冬, 舒键虹, 王茜, 等. 低氮胁迫对高羊茅 IAA 生长素代谢组影响的研究. 草业学报, 2016, 25(9): 64-73. [6] Wang M, Shen Q, Xu G, et al . New insight into the strategy for nitrogen metabolism in plant cells. International Review of Cell & Molecular Biology, 2014, 310: 1-37. [7] Tsay Y F, Chiu C C, Tsai C B, et al . Nitrate transporters and peptide transporters. Febs Letters, 2007, 581(12): 2290-2300. [8] Dechorgnat J, Nguyen C T, Armengaud P, et al . From the soil to the seeds: the long journey of nitrate in plants. Journal of Experimental Botany, 2011, 62(4): 1349-1359. [9] Okamoto M, Kumar A, Li W, et al . High-affinity nitrate transport in roots of Arabidopsis depends on expression of the NAR2-like gene AtNRT 3. 1. Plant Physiology, 2006, 140(3): 1036-1046. [10] Ferreira L M, Souza V M D, Tavares O C H, et al . OsAMT 1. 3 expression alters rice ammonium uptake kinetics and root morphology. Plant Biotechnology Reports, 2015, 9(4): 221-229. [11] Lehmann S, Gumy C, Blatter E, et al . In planta function of compatible solute transporters of the AtProT family. Journal of Experimental Botany, 2011, 62(2): 787-796. [12] Brady S M, Orlando D A, Lee J Y, et al . A high-resolution root spatiotemporal map reveals dominant expression patterns. Science, 2007, 318(5851): 801-806. [13] Ahmad I. Transporters in Arabidopsis roots mediating uptake of amino acids at naturally occurring concentrations. New Phytologist, 2011, 191(2): 459-467. [14] Hirsch S, Aitken A, Bertsch U, et al . A plant homologue to mammalian brain 14-3-3 protein and protein kinase C inhibitor. FEBS Letters, 1992, 296(2): 222-224. [15] Rooney M F, Ferl R J. Sequences of three Arabidopsis general regulatory factor genes encoding GF14 (14-3-3) proteins. Plant Physiology, 1995, 107(1): 283-284. [16] Zhu J K. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, 2003, 6(5): 441-445. [17] Sehnke P C, Henry R, Cline K, et al . Interaction of a plant 14-3-3 protein with the signal peptide of a thylakoid-targeted chloroplast precursor protein and the presence of 14-3-3 isoforms in the chloroplast stroma. Plant Physiology, 2000, 122(1): 235-241. [18] Wei F X, Wei M S. Expression profiling of the 14-3-3 gene family in response to salt stress and potassium and iron deficiencies in young tomato ( Solanum lycopersicum ) roots: analysis by real-time RT-PCR. Annals of Botany, 2006, 98(5): 965-974. [19] Bunney T D, van Walraven H S, de Boer A H. 14-3-3 protein is a regulator of the mitochondrial and chloroplast ATP synthase. Proceedings of the National Academy of Sciences USA, 2001, 98(7): 4249-4254. [20] Moorhead G, Douglas P, Morrice N, et al . Phosphorylated nitrate reductase from spinach leaves is inhibited by 14-3-3 proteins and activated by fusicoccin. Current Biology, 1996, 6(6): 1104-1113. [21] Liang B Z, Li A, Cai H, et al . The effect of nitrogen level on rice growth, carbon-nitrogen metabolism and gene expression. Biologia, 2015, 70(10): 1340-1350. [22] Li X D, Yu E R, Fan C C, et al . Developmental, cytological and transcriptional analysis of autotetraploid Arabidopsis . Planta, 2012, 236(2): 579-596. [23] Muslin A J, Xing H. 14-3-3 proteins: regulation of subcellular localization by molecular interference. Cellular Signalling, 2000, 12(12): 703-709. [24] Crawford N M. Nitrate: nutrient and signal for plant growth. Plant Cell, 1995, 7(7): 859-868. [25] Cotelle V, Meek S E, Provan F, et al . 14-3-3s regulate global cleavage of their diverse binding partners in sugar-starved Arabidopsis cells. Embo Journal, 2000, 19(12): 2869-2876. [26] Wang X L, Li X D, Shu J H, et al . Expression analysis of 14-3-3 genes in tall fescue under several abiotic stress conditions. Agricultural Science & Technology, 2015, (10): 2207-2213. 王小利, 李小冬, 舒健虹, 等. 高羊茅14-3-3基因在多种逆境胁迫下表达分析. 农业科学与技术, 2015, (10): 2207-2213. [27] Wang W, Shakes D C. Molecular evolution of the 14-3-3 protein family. Journal of Molecular Evolution, 1996, 43(4): 384-398. [28] Comparot S, Lingiah G, Martin T. Function and specificity of 14-3-3 proteins in the regulation of carbohydrate and nitrogen metabolism. Journal of Experimental Botany, 2003, 54(382): 595-604. [29] Yoo S J, Kim S H, Kim M J, et al . Involvement of the OsMKK 4 -OsMPK 1 cascade and its downstream transcription factor OsWRKY 53 in the wounding response in rice. Plant Pathology Journal, 2014, 30(2): 168-177. [30] Palme K, Teale W, Dovzhenko A. Plant signaling: HY5 synchronizes resource supply. Current Biology, 2016, 26(8): 328-329. [31] Heinonsalo J, Juurola E, Linden A, et al . Ectomycorrhizal fungi affect Scots pine photosynthesis through nitrogen and water economy, not only through increased carbon demand. Environmental & Experimental Botany, 2015, 109: 103-112. [32] Prescha A, Swiedrych A, Biernat J, et al . Increase in lipid content in potato tubers modified by 14-3-3 gene overexpression. Journal of Agricultural & Food Chemistry, 2001, 49(8): 3638-3643. [33] Swiedrych A, Prescha A, Matysiakkata I, et al . Repression of the 14-3-3 gene affects the amino acid and mineral composition of potato tubers. Journal of Agricultural & Food Chemistry, 2002, 50(7): 2137-2141. |