[1] Pertierra L R, Lara F, Benayas J, et al . Poa pratensis L., current status of the longest-established non-native vascular plant in the Antarctic. Polar Biology, 2013, 36(10): 1473-1481. [2] Reader R J, Wilson S D, Belcher J W, et al . Plant competition in relation to neighbor biomass-an intercontinental study with Poa pratensis . Ecology, 1994, 75(6): 1753-1760. [3] Dennhardt L A, DeKeyser E S, Tennefos S A, et al . There is no evidence of geographical patterning among invasive Kentucky bluegrass ( Poa pratensis ) populations in the northern great plains. Weed Science, 2016, 64(3): 409-420. [4] Da Costa M, Wang Z, Huang B. Physiological adaptation of Kentucky bluegrass to localized soil drying. Crop Science, 2004, 44(4): 1307. [5] Hu L, Zhang P, Jiang Y, et al . Metabolomic analysis revealed differential adaptation to salinity and alkalinity stress in Kentucky bluegrass ( Poa pratensis ). Plant Molecular Biology Reporter, 2015, 33(1): 56-68. [6] Puyang X, An M, Xu L, et al . Antioxidant responses to waterlogging stress and subsequent recovery in two Kentucky bluegrass ( Poa pratensis L.) cultivars. Acta Physiologiae Plantarum, 2015, 37(10): 1-12. [7] Shepherd T, Griffiths D W. The effects of stress on plant cuticular waxes. New Phytologist, 2006, 171(3): 469-499. [8] Yeats T H, Rose J K C. The formation and function of plant cuticles. Plant Physiology, 2013, 163(1): 5-20. [9] Jetter R, Kunst L, Samuels A L. Composition of plant cuticular waxes//Riederer M, Muller C. Biology of the Plant Cuticle. Oxford UK: Blackwell Publishing Ltd, 2006: 145-181. [10] Jetter R, Riederer M. Composition of cuticular waxes on Osmunda regalis Fronds. Journal of Chemical Ecology, 2000, 26(2): 399-412. [11] Richardson A, Franke R, Kerstiens G, et al . Cuticular wax deposition in growing barley ( Hordeum vulgare ) leaves commences in relation to the point of emergence of epidermal cells from the sheaths of older leaves. Planta, 2005, 222(3): 472-483. [12] Bernard A, Joubès J. Arabidopsis cuticular waxes: Advances in synthesis, export and regulation. Progress in Lipid Research, 2013, 52(1): 110-129. [13] Pilon J J, Lambers H, Baa W, et al . Leaf waxes of slow-growing alpine and fast-growing lowland Poa species: inherent differences and responses to UV-B radiation. Phytochemistry, 1999, 50(4): 571-580. [14] Gao J H, He Y J, Guo N, et al . Seasonal variations of leaf cuticular wax in herbs widely distributed in Chongqing. Acta Prataculturae Sinica, 2016, 25(1): 134-143. 高建花, 和玉吉, 郭娜, 等. 重庆地区野生草本植物叶表皮蜡质的季节性变化. 草业学报, 2016, 25(1): 134-143. [15] Mackova J, Vaskova M, Macek P, et al . Plant response to drought stress simulated by ABA application: Changes in chemical composition of cuticular waxes. Environmental and Experimental Botany, 2013, 86: 70-75. [16] Kosma D K, Bourdenx B, Bernard A, et al . The impact of water deficiency on leaf cuticle lipids of Arabidopsis . Plant Physiology, 2009, 151(4): 1918-1929. [17] Bengston C, Larsson C S, Liljenberg C. Effect of water stress on cuticular transpiration rate and amount and composition of epicuticular wax in seedlings of six oat varieties. Physiologia Plantarum, 1978, 44: 319-324. [18] Gordon D C, Percy K E, Riding R T. Effects of UV-B radiation on epicuticular wax production and chemical composition of four Picea species. New Phytologist, 1998, 138(3): 441-449. [19] Bush R T, McInerney F A. Leaf wax n-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy. Geochimica Et Cosmochimica Acta, 2013, 117: 161-179. [20] Dodd R S, Rafii Z A, Power A B. Ecotypic adaptation in Austrocedrus chilensis in cuticular hydrocarbon composition. New Phytologist, 1998, 138(4): 699-708. [21] Guo Y, He Y, Guo N, et al . Variations of the composition of the leaf cuticular wax among Chinese populations of Plantago major . Chemistry & Biodiversity, 2015, 12(4): 627-636. [22] Guo Y, Guo N, He Y, et al . Cuticular waxes in alpine meadow plants: climate effect inferred from latitude gradient in Qinghai-Tibetan Plateau. Ecology and Evolution, 2015, 5(18): 3954-3968. [23] Kuhn T K, Krull E S, Bowater A, et al . The occurrence of short chain n-alkanes with an even over odd predominance in higher plants and soils. Organic Geochemistry, 2010, 41(2): 88-95. [24] Nierop K G J, Naafs D F W, Van Bergen P F. Origin, occurrence and fate of extractable lipids in Dutch coastal dune soils along a pH gradient. Organic Geochemistry, 2005, 36(4): 555-566. [25] D’Anjou R M, Bradley R S, Balascio N L, et al . Climate impacts on human settlement and agricultural activities in northern Norway revealed through sediment biogeochemistry. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(50): 20332-20337. [26] Mazurek M A, Simoneit B R T. Higher molecular weight terpenoids as indicators of organic emissions from terrestrial vegetation//Eganhouse R. Molecular Markers in Environmental Geochemistry. American Chemical Society, 1997. [27] Poynter J, Eglinton G. Molecular composition of three sediments from Hole 717C: the Bengal Fan//Cochran J R, Stow D A V. Proceedings of the Ocean Drilling Program Scientific Results. Texas: Texas A & M University, 1990: 155-161. [28] Jetter R, Schäffer S. Chemical composition of the Prunus laurocerasus leaf surface. Dynamic changes of the epicuticular wax film during leaf development. Plant Physiology, 2001, 126(4): 1725-1737. [29] Zhang J Y, Broeckling C D, Blancaflor E B, et al . Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa ( Medicago sativa ). Plant Journal, 2005, 42(5): 689-707. [30] Ni Y, Song C, Wang X Q. Investigation on response mechanism of epicuticular wax on Arabidopsis thaliana under cold stress. Scientia Agricultura Sinica, 2014, 47(2): 252-261. 倪郁, 宋超, 王小清. 低温胁迫下拟南芥表皮蜡质的响应机制. 中国农业科学, 2014, 47(2): 252-261. [31] Baker E A. Influence of environment on leaf wax development in Brassica oleracea var gemmifera. New Phytologist, 1974, 73(5): 955-966. [32] Wang M, Wang Y, Wu H, et al . Three TaFAR genes function in the biosynthesis of primary alcohols and the response to abiotic stresses in Triticum aestivum . Scientific Reports, 2016, 6: 25008. [33] Li F, Wu X, Lam P, et al . Identification of the wax ester synthase/acyl-coenzyme A: diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis . Plant Physiology, 2008, 148(1): 97-107. [34] Rowland O, Zheng H, Hepworth S R, et al . CER4 encodes an alcohol-forming fatty acyl-coenzyme a reductase involved in cuticular wax production in Arabidopsis . Plant Physiology, 2006, 142(3): 866-877. [35] Haslam T M, Haslam R, Thoraval D, et al . ECERIFERUM2-LIKE proteins have unique biochemical and physiological functions in very-long-chain fatty acid elongation. Plant Physiology, 2015, 167(3): 682-692. [36] Sakuradani E, Zhao L, Haslam T M, et al . The CER22 gene required for the synthesis of cuticular wax alkanes in Arabidopsis thaliana is allelic to CER1. Planta, 2013, 237(3): 731-738. [37] Schellekens J, Buurman P. n-Alkane distributions as palaeoclimatic proxies in ombrotrophic peat: The role of decomposition and dominant vegetation. Geoderma, 2011, 164(3/4): 112-121. [38] Herzschuh U, Birks H J B, Liu X, et al . What caused the mid-Holocene forest decline on the eastern Tibet-Qinghai Plateau. Global Ecology and Biogeography, 2010, 19(2): 278-286. [39] Beniston M. Climatic change in mountain regions: A review of possible impacts. Climatic Change, 2003, 59(1/2): 5-31. [40] Frei E R, Ghazoul J, Matter P, et al . Plant population differentiation and climate change: responses of grassland species along an elevational gradient. Global Change Biology, 2014, 20(2): 441-455. [41] Wang G X, Wang Y B, Li Y S, et al . Influences of alpine ecosystem responses to climatic change on soil properties on the Qinghai-Tibet Plateau, China. Catena, 2007, 70(3): 506-514. [42] Luo P, Peng P A, Lu H Y, et al . Latitudinal variations of CPI values of long-chain n-alkanes in surface soils: Evidence for CPI as a proxy of aridity. Science China-Earth Sciences, 2012, 55(7): 1134-1146. [43] Wang C, Cao G, Wang Q, et al . Changes in plant biomass and species composition of alpine Kobresia meadows along altitudinal gradient on the Qinghai-Tibetan Plateau. Science in China Series C-Life Sciences, 2008, 51(1): 86-94. [44] Wiesenberg G L B, Schneckenberger K, Schwark L, et al . Use of molecular ratios to identify changes in fatty acid composition of Miscanthus×giganteus plant tissue, rhizosphere and root-free soil during a laboratory experiment. Organic Geochemistry, 2012, 46: 1. [45] Tipple B J, Pagani M. Environmental control on eastern broadleaf forest species’ leaf wax distributions and D/H ratios. Geochimica Et Cosmochimica Acta, 2013, 111: 64-77. [46] Sachse D, Radke J, Gleixner G. δD values of individual n-alkanes from terrestrial plants along a climatic gradient-Implications for the sedimentary biomarker record. Organic Geochemistry, 2006, 37(4): 469-483. |