[1] Epstein H E, Burke I C, Lauenroth W K.Regional patterns of decomposition and primary production rates in the U. S. great plains. Ecology, 2002, 83(2): 320-327.
[2] Ma W H, Yang Y H, He J S, et al. Above-and belowground biomass in relation to environmental factors in temperate grasslands, Inner Mongolia. Science China Life Sciences, 2008, 51(3): 263-270.
[3] Yuan F, Han X G, Ge J P, et al. Net primary productivity of Leymus chinensis steppe in Xilin River basin of Inner Mongolia and its responses to global climate change. Chinese Journal of Applied Ecology, 2008, 19(10): 2168-2176.
袁飞, 韩兴国, 葛剑平, 等. 内蒙古锡林河流域羊草草原净初级生产力及其对全球气候变化的响应. 应用生态学报, 2008, 19(10): 2168-2176.
[4] Zhou X H, Talley M, Luo Y.Biomass, litter, and soil respiration along a precipitation gradient in southern Great Plains, USA. Ecosystems, 2009, 12(8): 1369-1380.
[5] Hu Z M, Fan J W, Zhong H P, et al. Spatiotemporal dynamics of aboveground primary productivity along a precipitation gradient in Chinese temperate grassland. Science China Earth Sciences, 2007, 50(5): 754-764.
[6] Yang Y, Fang J, Fay P A, et al. Rain use efficiency across a precipitation gradient on the Tibetan Plateau. Geophysical Research Letters, 2010, 37(15): 78-82.
[7] Yue X F, Zhang T H, Zhao X Y, et al. Effects of rainfall patterns on annual plants in Horqin Sandy Land, Inner Mongolia of China. Journal of Arid Land, 2016, 8(3): 389-398.
[8] Luo Y Q, Zhao X Y, Wang T, et al. Plant root decomposition and its responses to biotic and abiotic factors. Acta Prataculturae Sinica, 2017, 26(2): 197-207.
罗永清, 赵学勇, 王涛, 等. 植物根系分解及其对生物和非生物因素的响应机理研究进展. 草业学报, 2017, 26(2): 197-207.
[9] Tu Y, You Y M, Sun J X.Effects of forest floor litter and nitrogen addition on soil microbial biomass C and N and microbial activity in a mixed Pinus tabulaeformis and Quercus liaotungensis forest stand in Shanxi Province of China. Chinese Journal of Applied Ecology, 2012, 23(9): 2325-2331.
涂玉, 尤业明, 孙建新. 油松-辽东栎混交林地表凋落物与氮添加对土壤微生物生物量碳、氮及其活性的影响. 应用生态学报, 2012, 23(9): 2325-2331.
[10] Luo Y Q, Zhao X Y, Ding J P, et al. Dynamics of aboveground biomass and litters in different types of dunes under vegetation restoration processes in the Horqin Sandy Land. Journal of Desert Research, 2016, 36(1): 78-84.
罗永清, 赵学勇, 丁杰萍, 等. 科尔沁沙地不同类型沙地植被恢复过程中地上生物量与凋落物量变化. 中国沙漠, 2016, 36(1): 78-84.
[11] Bolinder M A, Kätterer T, Andrén O, et al. Estimating carbon inputs to soil in forage-based crop rotations and modeling the effects on soil carbon dynamics in a Swedish long-term field experiment. Canadian Journal of Soil Science, 2012, 92(6): 821-833.
[12] Guo J F, Yang Y S, Chen G S, et al. A review on litter decomposition in forest ecosystem. Scientia Silvae Sinicae, 2006, 42(4): 93-100.
郭剑芬, 杨玉盛, 陈光水, 等. 森林凋落物分解研究进展. 林业科学, 2006, 42(4): 93-100.
[13] Luo Y Q, Zhao X Y, Li Y Q, et al. Root decomposition of Artemisia halodendron, and its effect on soil nitrogen and soil organic carbon in the Horqin Sandy Land, northeastern China. Ecological Research, 2016, 31(4): 535-545.
[14] Zhang C H, Zhang L M, Liu X R, et al. Root tissue and shoot litter decomposition of dominant species Stipa baicalensis in Hulunbuir meadow steppe of Inner Mongolia, China. Chinese Journal of Plant Ecology, 2011, 35(11): 1156-1166.
张彩虹, 张雷明, 刘杏认, 等. 呼伦贝尔草甸草原优势种贝加尔针茅根系组织和地上部分凋落物的分解. 植物生态学报, 2011, 35(11): 1156-1166.
[15] Li X F, Han S J, Zhang Y.Indirect effects of precipitation on litter decomposition of Quercus mongolica. Chinese Journal of Applied Ecology, 2007, 18(2): 261-266.
李雪峰, 韩士杰, 张岩. 降水量变化对蒙古栎落叶分解过程的间接影响. 应用生态学报, 2007, 18(2): 261-266.
[16] Qu H, Zhao X Y, Zhao H L, et al. Litter decomposition rates in Horqin Sandy Land, Northern China: Effects of habitat and litter quality. Fresenius Environmental Bulletin, 2011, 20(12): 3304-3312.
[17] Liu W D, Tao J P, Zhang T D, et al. Decomposition of above and belowground organ litters of mid-subtropical woody plants. Acta Ecologica Sinica, 2014, 34(17): 4850-4858.
刘文丹, 陶建平, 张腾达, 等. 中亚热带木本植物各器官凋落物分解特性. 生态学报, 2014, 34(17): 4850-4858.
[18] Austin A T, Vivanco L.Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature, 2006, 442(7102): 555-558.
[19] Lemoine N P, Sheffield J, Dukes J S, et al. Terrestrial Precipitation Analysis (TPA): A resource for characterizing long-term precipitation regimes and extremes. Methods in Ecology and Evolution, 2016, 7(11): 1396-1401.
[20] Joly F X, Kurupas K L, Throop H L.Pulse frequency and soil-litter mixing alter the control of cumulative precipitation over litter decomposition. Ecology, 2017, 98(9): 2255-2260.
[21] Brandt L A, King J Y, Milchunas D G.Effects of ultraviolet radiation on litter decomposition depend on precipitation and litter chemistry in a shortgrass steppe ecosystem. Global Change Biology, 2007, 13(10): 2193-2205. |