Acta Prataculturae Sinica ›› 2018, Vol. 27 ›› Issue (1): 204-214.DOI: 10.11686/cyxb2017211
• Orginal Article • Previous Articles Next Articles
WU Zhi-gang, WU Shu-jia, WANG Ying-chun, ZHENG Lin-lin*
Received:
2017-05-02
Revised:
2017-06-14
Online:
2018-01-20
Published:
2018-01-20
WU Zhi-gang, WU Shu-jia, WANG Ying-chun, ZHENG Lin-lin. Advances in studies of calcium-dependent protein kinase (CDPK) in plants[J]. Acta Prataculturae Sinica, 2018, 27(1): 204-214.
[1] Wang J J, Han S F, Li X J, et al . Calcium-dependent protein kinase (CPDKs) mediates the molecular basis of plant signal transduction. Acta Prataculturae Sinica, 2009, 18(3): 241-250. 王娇娇, 韩胜芳, 李小娟, 等. 钙依赖蛋白激酶(CPDKs)介导植物信号转导的分子基础. 草业学报, 2009, 18(3): 241-250. [2] Hamel L P, Sheen J, Séguin A. Ancient signals: comparative genomics of green plant CDPKs. Trends in Plant Science, 2014, 19(2): 79-89. [3] Romeis T, Herde M. From local to global: CDPKs in systemic defense signaling upon microbial and herbivore attack. Current Opinion in Plant Biology, 2014, 20: 1-10. [4] Simeunovic A, Mair A, Wurzinger B, et al . Know where your clients are: subcellular localization and targets of calcium-dependent protein kinases. Journal of Experimental Botany, 2016, 67(13): 3855. [5] Boudsocq M, Sheen J. CDPKs in immune and stress signaling. Trends in Plant Science, 2013, 18(1): 30-40. [6] Cai H, Cheng J, Yan Y, et al . Genome-wide identification and expression analysis of calcium-dependent protein kinase and its closely related kinase genes in Capsicum annuum . Frontiers in Plant Science, 2015, 6: 737. [7] Liese A, Romeis T. Biochemical regulation of in vivo function of plant calcium-dependent protein kinases (CDPK). Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2013, 1833(7): 1582-1589. [8] Rutschmann F, Stalder U, Piotrowski M, et al . LeCPK1, a calcium-dependent protein kinase from tomato. Plasma membrane targeting and biochemical characterization. Plant Physiology, 2002, 129(1): 156-168. [9] Asai S, Ichikawa T, Nomura H, et al . The variable domain of a plant calcium-dependent protein kinase (CDPK) confers subcellular localization and substrate recognition for NADPH oxidase. Journal of Biological Chemistry, 2013, 288(20): 14332-14340. [10] Ito T, Nakata M, Fukazawa J, et al . Alteration of substrate specificity: the variable N-terminal domain of tobacco Ca 2+ -dependent protein kinase is important for substrate recognition. The Plant Cell, 2010, 22(5): 1592-1604. [11] Hrabak E M, Chan C W M, Gribskov M, et al . The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiology, 2003, 132(2): 666-680. [12] Dubrovina A S, Kiselev K V, Veselova M V, et al . Enhanced resveratrol accumulation in rolB transgenic cultures of Vitis amurensis correlates with unusual changes in CDPK gene expression. Journal of Plant Physiology, 2009, 166(11): 1194-1206. [13] Christodoulou J, Malmendal A, Harper J F, et al . Evidence for differing roles for each lobe of the calmodulin-like domain in a calcium-dependent protein kinase. Journal of Biological Chemistry, 2004, 279(28): 29092-29100. [14] Yoon G M, Cho H S, Ha H J, et al . Characterization of NtCDPK1, a calcium-dependent protein kinase gene in Nicotiana tabacum , and the activity of its encoded protein. Plant Molecular Biology, 1999, 39(5): 991-1001. [15] Zhao R, Sun H L, Mei C, et al . The Arabidopsis Ca 2+ -dependent protein kinase CPK12 negatively regulates abscisic acid signaling in seed germination and post-germination growth. New Phytologist, 2011, 192(1): 61-73. [16] Myers C, Romanowsky S M, Barron Y D, et al . Calcium-dependent protein kinases regulate polarized tip growth in pollen tubes. The Plant Journal, 2009, 59(4): 528-539. [17] Zhang Q P, Wen L, Wang F, et al . Cloning and expression analysis of calcium-dependent protein kinase BnCDPK1 in Brassica . Journal of Plant Genetic Resources, 2014, 15(6): 1320-1326. 张秋平, 文李, 王峰, 等. 油菜钙依赖蛋白激酶 BnCDPK1 的克隆和表达分析. 植物遗传资源学报, 2014, 15(6): 1320-1326. [18] Dammann C, Ichida A, Hong B, et al . Subcellular targeting of nine calcium-dependent protein kinase isoforms from Arabidopsis . Plant Physiology, 2003, 132(4): 1840-1848. [19] Resh M D. Trafficking and signaling by fatty-acylated and prenylated proteins. Nature Chemical Biology, 2006, 2(11): 584-590. [20] Mehlmer N, Wurzinger B, Stael S, et al . The Ca 2+ -dependent protein kinase CPK3 is required for MAPK-independent salt-stress acclimation in Arabidopsis . The Plant Journal, 2010, 63(3): 484-498. [21] Chehab E W, Patharkar O R, Hegeman A D, et al . Autophosphorylation and subcellular localization dynamics of a salt-and water deficit-induced calcium-dependent protein kinase from ice plant. Plant Physiology, 2004, 135(3): 1430-1446. [22] Klimecka M, Muszyńska G. Structure and functions of plant calcium-dependent protein kinases. Acta Biochimica Polonica, 2007, 54(2): 219-233. [23] Curran A, Chang I F, Chang C L, et al . Calcium-dependent protein kinases from Arabidopsis show substrate specificity differences in an analysis of 103 substrates. Frontiers in Plant Science, 2011, 2(12): 1085-1091. [24] Swatek K N, Wilson R S, Ahsan N, et al . Multisite phosphorylation of 14-3-3 proteins by calcium-dependent protein kinases. Biochemical Journal, 2014, 459(1): 15-25. [25] Kulma A, Villadsen D, Campbell D G, et al . Phosphorylation and 14-3-3 binding of Arabidopsis 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase. The Plant Journal, 2004, 37(5): 654-667. [26] Veerabagu M, Kirchler T, Elgass K, et al . The interaction of the Arabidopsis response regulator ARR18 with bZIP63 mediates the regulation of proline dehydrogenase expression. Molecular Plant, 2014, 7(10): 1560-1577. [27] Mair A, Pedrotti L, Wurzinger B, et al . SnRK1-triggered switch of bZIP63 dimerization mediates the low-energy response in plants. Elife Sciences, 2015, 4: e05828. [28] Kanchiswamy C N, Takahashi H, Quadro S, et al . Regulation of Arabidopsis defense responses against Spodoptera littoralis by CPK-mediated calcium signaling. BMC Plant Biology, 2010, 10(1): 97-106. [29] Liu Y, Zhang S. Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis . The Plant Cell, 2004, 16(12): 3386-3399. [30] Joo S, Liu Y, Lueth A, et al . MAPK phosphorylation-induced stabilization of ACS6 protein is mediated by the non-catalytic C-terminal domain, which also contains the cis-determinant for rapid degradation by the 26S proteasome pathway. The Plant Journal, 2008, 54(1): 129-140. [31] Han L, Li G J, Yang K Y, et al . Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea -induced ethylene production in Arabidopsis . The Plant Journal, 2010, 64(1): 114-127. [32] Luo X, Chen Z, Gao J, et al . Abscisic acid inhibits root growth in Arabidopsis through ethylene biosynthesis. The Plant Journal, 2014, 79(1): 44-55. [33] Choi H, Park H J, Park J H, et al . Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiology, 2005, 139(4): 1750-1761. [34] Milla R, Miguel A, Uno Y, et al . A novel yeast two-hybrid approach to identify CDPK substrates: Characterization of the interaction between AtCPK11 and AtDi19, a nuclear zinc finger protein 1. FEBS Letters, 2006, 580(3): 904-911. [35] Uno Y, Milla M A R, Maher E, et al . Identification of proteins that interact with catalytically active calcium-dependent protein kinases from Arabidopsis . Molecular Genetics and Genomics, 2009, 281(4): 375-390. [36] Winter H, Huber S C. Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes. Critical Reviews in Plant Sciences, 2000, 19(1): 31-67. [37] Hardin S C, Winter H, Huber S C. Phosphorylation of the amino terminus of maize sucrose synthase in relation to membrane association and enzyme activity. Plant Physiology, 2004, 134(4): 1427-1438. [38] Fedosejevs E T, Ying S, Park J, et al . Biochemical and molecular characterization of RcSUS1, a cytosolic sucrose synthase phosphorylated in vivo at serine 11 in developing castor oil seeds. Journal of Biological Chemistry, 2014, 289(48): 33412-33424. [39] Yoon G M. New insights into the protein turnover regulation in ethylene biosynthesis. Molecular Cells, 2015, 38(7): 597-603. [40] Kobayashi M, Yoshioka M, Asai S, et al . StCDPK5 confers resistance to late blight pathogen but increases susceptibility to early blight pathogen in potato via reactive oxygen species burst. New Phytologist, 2012, 196(1): 223-237. [41] Sugden C, Donaghy P G, Halford N G, et al . Two SNF1-related protein kinases from spinach leaf phosphorylate and inactivate 3-hydroxy-3-methylglutaryl-coenzyme A reductase, nitrate reductase, and sucrose phosphate synthase in vitro . Plant Physiology, 1999, 120(1): 257-274. [42] Lambeck I, Chi J C, Krizowski S, et al . Kinetic analysis of 14-3-3-inhibited Arabidopsis thaliana nitrate reductase. Biochemistry, 2010, 49(37): 8177-8186. [43] Ishida S, Yuasa T, Nakata M, et al . A tobacco calcium-dependent protein kinase, CDPK1, regulates the transcription factor repression of shoot growth in response to gibberellins. The Plant Cell, 2008, 20(12): 3273-3288. [44] Cheng S H, Sheen J, Gerrish C, et al . Molecular identification of phenylalanine ammonialyase as a substrate of a specific constitutively active Arabidopsis CDPK expressed in maize protoplasts. FEBS Letters, 2001, 503(23): 185-188. [45] Chang I F, Curran A, Woolsey R, et al . Proteomic profiling of tandem affinity purified 14-3-3 protein complexes in Arabidopsis thaliana . Proteomics, 2009, 9(11): 2967-2985. [46] Pallucca R, Visconti S, Camoni L, et al . Specificity of ε and non-ε isoforms of Arabidopsis 14-3-3 proteins towards the H + -ATPase and other targets. Plos One, 2014, 9(6): e90764. [47] Cotelle V, Meek S E, Provan F, et al . 14-3-3s regulate global cleavage of their diverse binding partners in sugar-starved Arabidopsis cells. EMBO Journal, 2000, 19(12): 2869-2876. [48] Lachaud C, Prigent E, Thuleau P, et al . 14-3-3-regulated Ca 2+ -dependent protein kinase CPK3 is required for sphingolipid-induced cell death in Arabidopsis . Cell Death & Differentiation, 2013, 20(2): 209-217. [49] Denison F C, Gökirmak T, Ferl R J. Phosphorylation-related modification at the dimer interface of 14-3-3ω dramatically alters monomer interaction dynamics. Archives of Biochemistry and Biophysics, 2014, 541: 1-12. [50] Gökirmak T, Denison F C, Laughner B J, et al . Phosphomimetic mutation of a conserved serine residue in Arabidopsis thaliana 14-3-3ω suggests a regulatory role of phosphorylation in dimerization and target interactions. Plant Physiology and Biochemistry, 2015, 97: 296-303. [51] Boer A H D, Kleeff P J M V, Jing G. Plant 14-3-3 proteins as spiders in a web of phosphorylation. Protoplasma, 2013, 250(2): 425. [52] Wilson R S, Swatek K N, Thelen J J. Regulation of the regulators: post-translational modifications, subcellular, and spatiotemporal distribution of plant 14-3-3 proteins. Frontiers in Plant Science, 2016, 7: 611. [53] Ormancey M, Thuleau P, Mazars C, et al . CDPKs and 14-3-3 proteins: Emerging Duo in signaling. Trends in Plant Science, 2017, 22(3): 263-272. [54] Lozano-Durán R, Robatzek S. 14-3-3 proteins in plant-pathogen interactions. Molecular Plant-Microbe Interactions, 2015, 28(5): 511-518. [55] Cotelle V, Leonhardt N. 14-3-3 proteins in guard cell signaling. Frontiers in Plant Science, 2016, 6(e90734): 1210. [56] Abbasi F, Onodera H, Toki S, et al . OsCDPK13, a calcium-dependent protein kinase gene from rice, is induced by cold and gibberellin in rice leaf sheath. Plant Molecular Biology, 2004, 55(4): 541-552. [57] Matschi S, Werner S, Schulze W X, et al . Function of calcium-dependent protein kinase CPK28 of Arabidopsis thaliana in plant stem elongation and vascular development. The Plant Journal, 2013, 73(6): 883-896. [58] Ito T, Nakata M, Fukazawa J, et al . Scaffold function of Ca 2+ -dependent protein kinase: NtCDPK1 transfers 14-3-3 to the substrate RSG after phosphorylation. Plant Physiology, 2014, 165(4): 1737-1750. [59] Ito T, Nakata M, Fukazawa J, et al . Scaffold function of Ca 2+ -dependent protein kinase: tobacco Ca 2+ -dependent protein kinase1 transfers 14-3-3 to the substrate repression of shoot growth after phosphorylation. Plant Physiology, 2014, 165(4): 1737-1750. [60] Huang S J, Chang C L, Wang P H, et al . A type III ACC synthase, ACS7, is involved in root gravitropism in Arabidopsis thaliana . Journal of Experimental Botany, 2013, 64(14): 4343-4360. [61] Lyzenga W J, Booth J K, Stone S L. The Arabidopsis RING-type E3 ligase XBAT32 mediates the proteasomal degradation of the ethylene biosynthetic enzyme, 1-aminocyclopropane-1-carboxylate synthase 7. Plant Journal for Cell & Molecular Biology, 2012, 71(1): 23-34. [62] Kawamoto N, Sasabe M, Endo M, et al . Calcium-dependent protein kinases responsible for the phosphorylation of a bZIP transcription factor FD crucial for the florigen complex formation. Scientific Reports, 2015, 5: 8341. [63] Taoka K, Ohki I, Tsuji H, et al . Structure and function of florigen and the receptor complex. Trends in Plant Science, 2013, 18(5): 287-294. [64] Zhao L N, Shen L K, Zhang W Z, et al . Ca 2+ -dependent protein kinase 11 and 24 modulate the activity of the inward rectifying K + channels in Arabidopsis pollen tubes. The Plant Cell, 2013, 25(2): 649-661. [65] Liu H, Che Z, Zeng X, et al . Genome-wide analysis of calcium-dependent protein kinases and their expression patterns in response to herbivore and wounding stresses in soybean. Functional & Integrative Genomics, 2016, 16(5): 481-493. [66] Giacometti S, Marrano C A, Bonza M C, et al . Phosphorylation of serine residues in the N-terminus modulates the activity of ACA8, a plasma membrane Ca 2+ -ATPase of Arabidopsis thaliana . Journal of Experimental Botany, 2012, 63(3): 1215-1224. [67] Li W G, Komatsu S. Cold stress-induced calcium-dependent protein kinase (s) in rice ( Oryza sativa L.) seedling stem tissues. Theoretical and Applied Genetics, 2000, 101(3): 355-363. [68] Giammaria V, Grandellis C, Bachmann S, et al . StCDPK2 expression and activity reveal a highly responsive potato calcium-dependent protein kinase involved in light signalling. Planta, 2011, 233(3): 593. [69] Zou J J, Wei F J, Wang C, et al . Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid-and Ca 2+ -mediated stomatal regulation in response to drought stress. Plant Physiology, 2010, 154(3): 1232-1243. [70] Xu J, Tian Y S, Peng R H, et al . AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis . Planta, 2010, 231(6): 1251-1260. [71] Romeis T, Ludwig A A, Martin R, et al . Calcium-dependent protein kinases play an essential role in a plant defence response. EMBO Journal, 2001, 20(20): 5556-5567. [72] Zhang M, Liang S, Lu Y T. Cloning and functional characterization of NtCPK4, a new tobacco calcium-dependent protein kinase. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 2005, 1729(3): 174-185. [73] Ma S Y, Wu W H. AtCPK23 functions in Arabidopsis responses to drought and salt stresses. Plant Molecular Biology, 2007, 65(4): 511-518. [74] Liu G, Chen J, Wang X. VfCPK1, a gene encoding calcium-dependent protein kinase from Vicia faba , is induced by drought and abscisic acid. Plant, Cell & Environment, 2006, 29(11): 2091-2099. [75] Yu X C, Zhu S Y, Gao G F, et al . Expression of a grape calcium-dependent protein kinase ACPK1 in Arabidopsis thaliana promotes plant growth and confers abscisic acid-hypersensitivity in germination, postgermination growth, and stomatal movement. Plant Molecular Biology, 2007, 64(5): 531-538. [76] Berberich T, Kusano T. Cycloheximide induces a subset of low temperature-inducible genes in maize. Molecular and General Genetics MGG, 1997, 254(3): 275-283. [77] Wan B, Lin Y, Mou T. Expression of rice Ca 2+ -dependent protein kinases (CDPKs) genes under different environmental stresses. FEBS Letters, 2007, 581(6): 1179-1189. [78] Ye S, Wang L, Xie W, et al . Expression profile of calcium-dependent protein kinase (CDPKs) genes during the whole lifespan and under phytohormone treatment conditions in rice ( Oryza sativa L. ssp. indica). Plant Molecular Biology, 2009, 70(3): 311-325. [79] Lanteri M L, Pagnussat G C, Lamattina L. Calcium and calcium-dependent protein kinases are involved in nitric oxide-and auxin-induced adventitious root formation in cucumber. Journal of Experimental Botany, 2006, 57(6): 1341-1351. [80] Munemasa S, Hauser F, Park J, et al . Mechanisms of abscisic acid-mediated control of stomatal aperture. Current Opinion in Plant Biology, 2015, 28: 154-162. [81] Zhang T, Chen S, Harmon A C. Protein phosphorylation in stomatal movement. Plant Signaling & Behavior, 2014, 9(11): e972845. [82] Ronzier E, Corratgé-Faillie C, Sanchez F, et al . CPK13, a noncanonical Ca 2+ -dependent protein kinase, specifically inhibits KAT2 and KAT1 shaker K + channels and reduces stomatal opening. Plant Physiology, 2014, 166(1): 314-326. [83] Sato A, Sato Y, Fukao Y, et al . Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2. 6 protein kinase. Biochemical Journal, 2009, 424(3): 439-448. [84] Geiger D, Scherzer S, Mumm P, et al . Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca 2+ affinities. Proceedings of the National Academy of Sciences, 2010, 107(17): 8023-8028. [85] Mori I C, Murata Y, Yang Y, et al . CDPKs, CPK6 and CPK3 function in ABA regulation of guard cell S-type anion-and Ca 2+ -permeable channels and stomatal closure. PLoS Biology, 2006, 4(10): e327. [86] Brandt B, Brodsky D E, Xue S, et al . Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action. Proceedings of the National Academy of Sciences, 2012, 109(26): 10593-10598. [87] Latz A, Mehlmer N, Zapf S, et al . Salt stress triggers phosphorylation of the Arabidopsis vacuolar K + channel TPK1 by calcium-dependent protein kinases (CDPKs). Molecular Plant, 2013, 6(4): 1274-1289. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||