Welcome to Acta Prataculturae Sinica ! Today is Share:

Acta Prataculturae Sinica ›› 2017, Vol. 26 ›› Issue (12): 35-47.DOI: 10.11686/cyxb2017250

Previous Articles     Next Articles

Effects of hybrid, plant density and plastic film mulching on yield and water use efficiency of dryland maize

LI Shang-Zhong, FAN Ting-Lu, ZHAO Gang, WANG Lei, DANG Yi, ZHANG Jian-Jun, TANG Xiao-Ming, WANG Shu-Ying   

  1. Institute of Dryland Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
  • Received:2017-05-24 Revised:2017-09-04 Online:2017-12-20 Published:2017-12-20

Abstract: The objective of this experiment was to study the effects of hybrids, plant density and plastic film mulching on plant traits, water consumption, grain yield and water use efficiency of dryland maize to help identify opportunities to more effectively utilize limited water resources. A split-split plot designed field experiment was established; the main plot treatments were full plastic film mulching on double ridges and planting in catchment furrows (FFDRF) and flat planting with narrow plastic film mulching (NF). The split-plot treatment was hybrid; Xianyu335, Jixiang1hao and Jiudan4hao and the split-split-plot treatment was plant density; 4.5×104 (Low), 6.75×104 (Middle) and 9.0×104 (High) plants/ha. Plant height, leaf area index (LAI), dry matter, soil moisture at 0-2 m depth, grain yield and water use efficiency were assessed. The results showed that FFDRF increased height, LAI, grain yield and water use efficiency because it more allowed more effective utilization of limited precipitation compared with NF. Increased plant density reduced 100-grain weight and grain number per spike however, increased density resulted in increased dry matter, grain yield and water use efficiency. The 9.0×104 plants/ha density increased dry matter, grain yield and water use efficiency by 8.3%, 5.2%, 3.4% and 27.7%, 32.9%, 28.1% compared with the 6.75×104 and 4.5×104 treatments, respectively. Xianyu335 and Jixiang1hao performed better than Jiudan4hao at high plant densities; grain yield and water use efficiency were highest in Xianyu335; 3.7%,1.7% and 43.8%,37.1% higher than Jixiang1hao and Jiudan4hao, respectively. Water consumption increased with increasing plant density and differed among hybrids; Xianyu335>Jixiang1hao>Jiudan4hao. Hybrids, plant density and plastic film mulching influenced the optimum plant population, water consumption, grain yield and water use efficiency of dryland maize, varieties had the greatest effect followed by plant density and mulch. Selection of appropriate hybrids and plant densities when using and plastic film mulch modes should be undertaken to maximize potential yields.