[1] Kaessmann H.Origins, evolution, and phenotypic impact of new genes. Genome Research, 2010, 20(10): 1313. [2] Singh A, Jethva M, Singlapareek S L, et al. Analyses of old prokaryotic proteins indicate functional diversification in arabidopsis and Oryza sativa. Frontiers in Plant Science, 2016, 7: 304. [3] Roger A J.Reconstructing early events in eukaryotic evolution. American Naturalist, 1999, 154(Supple 4): S146. [4] Timmis J N, Ayliffe M A, Huang C Y, et al. Endosymbiotic gene transfer: Organelle genomes forge eukaryotic chromosomes. Nature Reviews Genetics, 2004, 5(2): 123-135. [5] Jiang N, Bao Z, Zhang X, et al. Pack-mule transposable elements mediate gene evolution in plants. Nature, 2004, 431(7008): 569-573. [6] Morgante M, Brunner S, Pea G, et al. Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nature Genetics, 2005, 37(9): 997. [7] Wolf Y I, Novichkov P S, Karev G P, et al. The universal distribution of evolutionary rates of genes and distinct characteristics of eukaryotic genes of different apparent ages. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(18): 7273-7280. [8] Nelson D R, Schuler M A, Paquette S M, et al. Comparative genomics of rice and arabidopsis. Analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot. Plant Physiology, 2004, 135(2): 756-772. [9] Tripathi A K, Khushwant S, Ashwani P, et al. Histone chaperones in arabidopsis and rice: Genome-wide identification, phylogeny, architecture and transcriptional regulation. BMC Plant Biology, 2015, 15(1): 1-25. [10] Avenhaus U, Cabeza R A, Liese R, et al. Short-term molecular acclimation processes of legume nodules to increased external oxygen concentration. Frontiers in Plant Science, 2015, 6(201): 1133. [11] Vardien W, Steenkamp E T, Valentine A J.Legume nodules from nutrient-poor soils exhibit high plasticity of cellular phosphorus recycling and conservation during variable phosphorus supply. Journal of Plant Physiology, 2016, 191: 73-81. [12] Zhang J, Yin B, Xie Y, et al. Legume-cereal intercropping improves forage yield, quality and degradability. PloS One, 2015, 10(12): e0144813. [13] Ke D X, Li X Y, Wang L, et al. Isolation of GmHAT5 from Glycine max and analysis of saline tolerance for transgenic Lotus japonicus. Scientia Agricultura Sinica, 2017, 50(9): 1559-1570. 柯丹霞, 李祥永, 王磊, 等. 大豆GmHAT5的克隆及其转基因百脉根的抗盐分析. 中国农业科学, 2017, 50(9): 1559-1570. [14] Young N D, Debellé F, Oldroyd G E D, et al.The medicago genome provides insight into the evolution of rhizobial symbioses. Nature, 2011, 480(7378): 520. [15] Li W, Godzik A.Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics, 2006, 22(13): 1658. [16] Punta M, Coggill P C, Eberhardt R Y, et al. The pfam protein families database. Nucleic Acids Research, 2012, 36(Database issue): D281. [17] Ye J, Fang L, Zheng H, et al. Wego: A web tool for plotting go annotations. Nucleic Acids Research, 2006, 34(Web Server issue): W293. [18] Qi X, Min X Y, Zhang Z S, et al. Identification and expression analysis of transcription factors in alfalfa under low temperature stress. Pratacultural Science, 2017, 34(9): 1824-1829. 齐晓, 闵学阳, 张正社, 等. 紫花苜蓿响应低温胁迫转录因子的鉴定及表达分析. 草业科学, 2017, 34(9): 1824-1829. [19] Apic G, Gough J, Teichmann S A.Domain combinations in archaeal, eubacterial and eukaryotic proteomes. Journal of Molecular Biology, 2001, 310(2): 311-325. [20] Massey E J.The kolmogorov-smirnov test of goodness of fit. Journal of the American Statistical Association, 1951, 46(253): 68-78. [21] Qi X, Zhang Z S, Min X Y, et al. The identification, evolutionary characterization and expression analysis of the bZIP transcription factor family in Medicago sativa. Pratacultural Science, 2017, 34(8): 1635-1648. 齐晓, 张正社, 闵学阳, 等. 紫花苜蓿bZIP基因家族的鉴定、进化及表达分析. 草业科学, 2017, 34(8): 1635-1648. [22] Bao A K, Bai T H, Zhao T X, et al. CRISPR/Cas9: A gene targeting technology and its application in the study of plant genetic function. Acta Prataculturae Sinica, 2015, 26(7): 190-200. 包爱科, 白天惠, 赵天璇, 等. CRISPR/Cas9系统:基因组定点编辑技术及其在植物基因功能研究中的应用. 草业学报, 2015, 26(7): 190-200. [23] Martin W, Herrmann R G.Gene transfer from organelles to the nucleus: How much, what happens, and why? Plant Physiol, 1998, 118(1): 9-17. [24] Kurland C G, Andersson S G.Origin and evolution of the mitochondrial proteome. Microbiology and Molecular Biology Reviews, 2000, 64(4): 786-820. [25] May T, Soll J.Chloroplast precursor protein translocon. Febs Letters, 1999, 452(1/2): 52-56. [26] Cline K, Dabney-Smith C.Plastid protein import and sorting: Different paths to the same compartments. Current Opinion in Plant Biology, 2008, 11(6): 585-592. [27] Jarvis P.Targeting of nucleus-encoded proteins to chloroplasts in plants. New Phytologist, 2008, 179(2): 257-285. [28] Elhaik E, Sabath N, Graur D.The inverse relationship between evolutionary rate and age of mammalian genes is an artifact of increased genetic distance with rate of evolution and time of divergence. Molecular Biology & Evolution, 2006, 23(1): 1-3. [29] Sun Q J, Jiao B H.Research progress in mitochondrial protepmics. Chemistry of Life, 2008, 28(5): 531-535. 孙青菊, 焦炳华. 线粒体蛋白质组学. 生命的化学, 2008, 28(5): 531-535. [30] Zhu Y Q, Yan H F, Xia F S, et al. The relationship between mitochondria and seed aging. Pratacultural Science, 2016, 33(2): 290-298. 朱艳乔, 闫慧芳, 夏方山, 等. 线粒体与种子老化的关系. 草业科学, 2016, 33(2): 290-298. [31] Li S S, Xue L F, Su A G, et al. Progress on sequencing and alignment analysis of higher plant mitochondrial genomes. Journal of China Agricultural University, 2011, 16(2): 22-27. 李双双, 薛龙飞, 苏爱国, 等. 高等植物线粒体基因组测序和序列分析. 中国农业大学学报, 2011, 16(2): 22-27. [32] Bullerwell C E, Gray M W.Evolution of the mitochondrial genome: protist connections to animals, fungi and plants. Current Opinion in Microbiology, 2004, 7(5): 528-534. [33] Jaenicke R.Folding and association of proteins. Progress in Biophysics & Molecular Biology, 1992, 343(1): 9. [34] Min X Y, Liu W X, Zhang Z S, et al. Construction of SSR marker fingerprint database of standard alfalfa varieties utilizing DUS tests. Acta Prataculturae Sinica, 2017, 26(11): 47-56. 闵学阳, 刘文献, 张正社, 等. 苜蓿DUS测试标准品种SSR分子标记指纹图谱的构建. 草业学报, 2017, 26(11): 47-56 [35] Yang S, Bourne P E.The evolutionary history of protein domains viewed by species phylogeny. PloS One, 2009, 4(12): e8378. [36] Zhang X C, Zheng W, Zhang X, et al. Evolutionary dynamics of protein domain architecture in plants. BMC Evolutionary Biology, 2012, 12(1): 6. [37] Celedon J M, Cline K.Intra-plastid protein trafficking: how plant cells adapted prokaryotic mechanisms to the eukaryotic condition. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2013, 1833(2): 341-351. |