[1] Lebaudy A, Véry A A, Sentenac H.K+ channel activity in plants: Genes, regulations and functions. FEBS Letters, 2007, 581(12): 2357-2366. [2] Epstein E, Rains D, Elzam O.Resolution of dual mechanisms of potassium absorption by barley roots. Proceedings of the National Academy of Sciences of the United States of America, 1963, 49(5): 684-692. [3] Coskun D, Britto D T, Kochian L V, et al. How high do ion fluxes go? A re-evaluation of the two-mechanism model of K+ transport in plant roots. Plant Science, 2016, 243: 96-104. [4] Véry A A, Nieves-Cordones M, Daly M, et al. Molecular biology of K+ transport across the plant cell membrane: What do we learn from comparison between plant species? Journal of Plant Physiology, 2014, 171(9): 748-769. [5] Santa-María G E, Rubio F, Dubcovsky J, et al. The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell, 1997, 9(12): 2281-2289. [6] Quintero F J, Blatt M R.A new family of K+ transporters from Arabidopsis that are conserved across phyla. FEBS letters, 1997, 415(2): 206-211. [7] Li W H, Xu G H, Abdel A, et al. Plant HAK/KUP/KT K+ transporters: Function and regulation. Seminars in Cell and Developmental Biology, 2018, 74: 133-141. [8] Gierth M, Mäser P.Potassium transporters in plants-involvement in K+ acquisition, redistribution and homeostasis. FEBS letters, 2007, 581(12): 2348-2356. [9] Nieves-Cordones M, Ródenas R, Chavanieu A, et al. Uneven HAK/KUP/KT protein diversity among angiosperms: Species distribution and perspectives. Frontiers in Plant Science, 2016, 7: 127. [10] Li X W, You X L, Wang Y.Research progress of HAK/KUP/KT potassium transporter family in plant response to salt stress. Plant Science Journal, 2019, 37(1): 101-108. 李学文, 游西龙, 王艳. 钾离子转运载体HAK/KUP/KT家族参与植物耐盐性的研究进展. 植物科学学报, 2019, 37(1): 101-108. [11] Shen Y, Shen L, Shen Z, et al. The potassium transporter OsHAK21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice. Plant, Cell & Environment, 2016, 38(12): 2766-2779. [12] Bañuelos M A, Garciadeblas B, Cubero B, et al. Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiology, 2002, 130(2): 784-795. [13] Kleffmann T, Russenberger D, Zychlinski A V, et al. The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Current Biology, 2004, 14(5): 354-362. [14] Wang Y, Juan X U, Zhang M, et al. GhKT2: A novel K+ transporter gene in cotton (Gossypium hirsutum). Frontiers of Agricultural Science and Engineering, 2018, 5(2): 226-235. [15] Wang Y Z, Lü J H, Chen D, et al. Genome-wide identification, evolution, and expression analysis of the KT/HAK/KUP family in pear. Genome, 2018, 61(10): 755-765. [16] Ou W, Mao X, Huang C, et al. Genome-wide identification and expression analysis of the kup family under abiotic stress in Cassava (Manihot esculenta Crantz). Frontiers in Physiology, 2018, 9: 17. [17] Duan H R, Wang S M.Cloning and expression analysis of a high-affinity K+ transporter gene SsHAK2 in Suaeda salsa. Acta Prataculturae Sinica, 2016, 25(2): 114-123. 段慧荣, 王锁民. 盐地碱蓬高亲和性K+转运蛋白基因SsHAK2的克隆与表达模式分析. 草业学报, 2016, 25(2): 114-123. [18] Takahashi R, Nishio T, Ichizen N, et al. High-affinity K+ transporter PhaHAK5 is expressed only in salt-sensitive reed plants and shows Na+ permeability under NaCl stress. Plant Cell Reports, 2007, 26(9): 1673-1679. [19] Su H, Golldack D, Zhao C S, et al. The expression of HAK-type K+ transporters is regulated in response to salinity stress in commolon ice plant. Plant Physiology, 2002, 129(4): 1482-1493. [20] Martinez-Cordero M A, Martinez V, Rubio F. High-affinity K+ uptake in pepper plants. Journal of Experimental Botany, 2005, 56(416): 1553-1562. [21] Rubio F, Nieves-Cordones M, Aleman F, et al. Relative contribution of AtHAK5 and AtAKT1 to K+ uptake in the high-affinity range of concentrations. Physiologia Plantarum, 2008, 134(4): 598-608. [22] Osakabe Y, Arinaga N, Umezawa T, et al. Osmotic stress responses and plant growth controlled by potassium transporters in Arabidopsis. Plant Cell, 2013, 25(2): 609-624. [23] Jung J Y, Shin R, Schachtman D P.Ethylene mediates response and tolerance to potassium deprivation in Arabidopsis. Plant Cell, 2009, 21(2): 607-621. [24] Nam Y J, Tran L S, Kojima M, et al. Regulatory roles of cytokinins and cytokinin signaling in response to potassium deficiency in Arabidopsis. PLoS One, 2012, 7(10): e47797. [25] Rubio F, Fon M, Ródenas R, et al. A low K+ signal is required for functional high-affinity K+ uptake through HAK5 transporters. Physiologia Plantarum, 2014, 152(3): 558-570. [26] Davies C R, Shin R, Liu W, et al. Transporters expressed during grape berry (Vitis vinifera L.) development are associated with an increase in berry size and berry potassium accumulation. Journal of Experimental Botany, 2006, 57(12): 3209-3216. [27] Ruan Y L, Llewellyn D J, Furbank R T.The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin. Plant Cell, 2001, 13(1): 47-60. [28] Desbrosses G, Kopka C, Ott T, et al. Lotus japonicus LjKUP is induced late during nodule development and encodes a potassium transporter of the plasma membrane. Molecular Plant Microbe Interactions, 2004, 17(7): 789-797. [29] Kim E J, Kwak J M, Uozumi N, et al. AtKUP1: An Arabidopsis gene encoding high-affinity potassium transport activity. Plant Cell, 1998, 10(1): 51-62. [30] Elumalai R P, Nagpal P, Reed J W.A mutation in the Arabidopsis KT2/KUP2 potassium transporter gene affects shoot cell expansion. Plant Cell, 2002, 14(1): 119-131. [31] Rubio F, Santa-Maria G E, Rodriguez-Navarro A. Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells. Physiologia Plantarum, 2000, 109(1): 34-43. [32] Song Y F, Zhang L, Dong L H, et al. Research progress on KUP/HAK/KT potassium transporter family in plant. Journal of Agricultural Science and Technology, 2013, 15(6): 92-98. 宋毓峰, 张良, 董连红, 等. 植物KUP/HAK/KT家族钾转运体研究进展. 中国农业科技导报, 2013, 15(6): 92-98. [33] Santa-María, Guillermo E, Oliferuk S, et al. KT-HAK-KUP transporters in major terrestrial photosynthetic organisms: A twenty years tale. Journal of Plant Physiology, 2018, 226: 77-90. [34] Ahn S J, Shin R, Schachtman D P.Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake. Plant Physiology, 2004, 134(3): 1135-1145. [35] Rigas S, Debrosses G, Haralampidis K, et al. TRH1 encodes a potassium transporter required for tip growth in Arabidopsis root hairs. Plant Cell, 2001, 13(1): 139-151. [36] Fu H H, Luan S.AtKUP1: A dual-affinity K+ transporter from Arabidopsis. Plant Cell, 1998, 10(1): 63-73. [37] Takahashi R, Nishio T, Ichizen N, et al. Cloning and functional analysis of the K+ transporter, PhaHAK2, from salt-sensitive and salt-tolerant reed plants. Biotechnology Letters, 2007, 29(3): 501-506. [38] Horie T, Sugawara M, Okada T, et al. Rice sodium-insensitive potassium transporter, OsHAK5, confers increased salt tolerance in tobacco BY2 cells. Journal of Bioscience and Bioengineering, 2011, 111(3): 346-356. [39] Han M, Wu W, Wu W H, et al. Potassium transporter KUP7 is involved in K+ acquisition and translocation in Arabidopsis root under K+-limited conditions. Molecular Plant, 2016, 9(3): 437-446. [40] Nieves-Cordones M, Alemán F, Martínez V, et al. K+ uptake in plant roots. The systems involved, their regulation and parallels in other organisms. Journal of Plant Physiology, 2014, 171(9): 688-695. [41] Qi Z, Hampton C R, Shin R, et al. The high affinity K+ transporter AtHAK5 plays a physiological role in planta at very low K+ concentrations and provides a caesium uptake pathway in Arabidopsis. Journal of Experimental Botany, 2008, 59(3): 595-607. [42] Ragel P, Ródenas R, García-Martín E, et al. CIPK23 regulates HAK5-mediated high-affinity K+ uptake in Arabidopsis roots. Plant Physiology, 2015, 169(4): 2863-2873. [43] Santa-María G E, Danna C H, Czibener C. High affinity potassium transport in barley roots. Ammolonium-sensitive and-insensitive pathways. Plant Physiology, 2000, 123(1): 297-306. [44] Yang T Y, Zhang S, Hu Y B, et al. The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels. Plant Physiology, 2014, 166(2): 945-959. [45] Zhang H W, Xiao W, Yu W W, et al. Foxtail millet SiHAK1 excites extreme high-affinity K+ uptake to maintain K+ homeostasis under low K+ or salt stress. Plant Cell Reports, 2018, 37(11): 1533-1546. [46] Tenorio-Berrío R, Pérez-Alonso M, Vicente-Carbajosa J, et al. Identification of two auxin-regulated potassium transporters involved in seed maturation. International Journal of Molecular Sciences, 2018, 19(7): 2132-2148. [47] Yang Z M, Wang Y.Cloning of potassium transporter gene (HcKUP12) from Halostachys caspica and its expression profile under salt stress. Plant Science Journal, 2015, 33(4): 499-506. 杨中敏, 王艳. 盐穗木钾转运蛋白基因HcKUP12的克隆及在盐胁迫下的表达分析. 植物科学学报, 2015, 33(4): 499-506. [48] Kobayashi D, Uozumi N, Hisamatsu S, et al. AtKUP/HAK/KT9, a K+ transporter from Arabidopsis thaliana, mediates Cs+ uptake in Escherichia coli. Bioscience Biotechnology and Biochemistry, 2010, 74(1): 203-205. [49] Maathuis F J.The role of monovalent cation transporters in plant responses to salinity. Journal of Experimental Botany, 2006, 57(5): 1137-1147. [50] Wang T T, Hao H Q, Feng X, et al. Research advances in the function of the high-affinity K+ transporter (HKT) proteins and plant salt tolerance. Chinese Bulletin of Botany, 2018, 53(5): 710-725. 王甜甜, 郝怀庆, 冯雪, 等. 植物HKT蛋白耐盐机制研究进展. 植物学报, 2018, 53(5): 710-725. [51] Schachtman D P, Schroeder J I.Structure and transport mechanism of a high-affinity potassium uptake transporter from higher-plants. Nature, 1994, 370: 655-658. [52] Hauser F, Horie T.A conserved primary salt tolerance mechanism mediated by HKT transporters: A mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant, Cell & Environment, 2010, 33(4): 552-565. [53] Durell S R, Guy H R.Structural models of the KtrB, TrkH, and Trk1,2 symporters based on the structure of the KcsA K+ channel. Biophysical Journal, 1999, 77(2): 789-807. [54] Vieira-Pires R S, Szollosi A, Morais-Cabral J H. The structure of the KtrAB potassium transporter. Nature, 2013, 104(2): 23a. [55] Kato N, Akai M, Zulkifli L, et al. Role of positively charged amino acids in the M2D transmembrane helix of Ktr/Trk/HKT type cation transporters. Channels, 2007, 1(3): 161-171. [56] Ali Z, Park H C, Ali A, et al. TsHKT1;2, a HKT1 homolog from the extremophile Arabidopsis relative Thellungiella salsuginea, shows K+ specificity in the presence of NaCl. Plant Physiology, 2012, 158(3): 1463-1474. [57] Ali A, Khan I U, Jan M, et al. The high-affinity potassium transporter EpHKT1;2 from the extremophile Eutrema parvula mediates salt tolerance. Frontier in Plant Science, 2018, 9: 1108. [58] Ali, A, Raddatz N, Aman R, et al. A single amino acid substitution in the sodium transporter HKT1 associated with plant salt tolerance. Plant Physiology, 2016, 171(3): 2112-2126. [59] Han Y, Yin S Y, Huang L, et al. A sodium transporter HvHKT1;1 confers salt tolerance in Barley via regulating tissue and cell ion homeostasis. Plant and Cell Physiology, 2018, 59(10): 1976-1989. [60] Sunarpi, Horie T, Motoda J, et al. Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. The Plant Journal, 2005, 44(6): 928-938. [61] Zhang M, Cao Y, Wang Z, et al. A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na+ exclusion and salt tolerance in maize. New Phytologist, 2018, 217(3): 1161-1176. [62] Jaime-Pérez N, Pineda B, García-Sogo B, et al. The sodium transporter encoded by the HKT1;2 gene modulates sodium/potassium homeostasis in tomato shoots under salinity. Plant, Cell & Environment, 2017, 40(5): 658-671. [63] Rosas-Santiago P, Lagunas-Gómez D, Barkla B J, et al. Identification of rice cornichon as a possible cargo receptor for the golgi- localized sodium transporter OsHKT1;3. Journal of Experimental Botany, 2015, 66(9): 2733-2748. [64] Suzuki K, Yamaji N, Costa A, et al. OsHKT1;4-mediated Na+ transport in stems contributes to Na+ exclusion from leaf blades of rice at the reproductive growth stage upon salt stress. BMC Plant Biology, 2016, 16: 22. [65] Nishijima T, Furuhashi M, Sakaoka S, et al. Ectopic expression of Mesembryanthemum crystallinum sodium transporter McHKT2 provides salt stress tolerance in Arabidopsis thaliana. Bioscience, Biotechnology and Biochemistry, 2017, 81(11): 2139-2144. [66] Ariyarathna H A, Oldach K H, Francki M G.A comparative gene analysis with rice identified orthologous group Ⅱ HKT genes and their association with Na+ concentration in bread wheat. BMC Plant Biology, 2016, 16: 21. [67] Oomen R J, Benito B, Sentenac H, et al. HKT2;2/1, a K+-permeable transporter identified in a salt-tolerant rice cultivar through surveys of natural genetic polymorphism. The Plant Journal, 2012, 71(5): 750-762. [68] Ardie S W, Xie L, Takahashi R, et al. Cloning of a high-affinity K+ transporter gene PutHKT2;1 from Puccinellia tenuiflora and its functional comparison with OsHKT2;1 from rice in yeast and Arabidopsis. Journal of Experimental Botany, 2009, 60(12): 3491-3502. [69] Li J, Zhang J L, Wang S M, et al. Cloning and bio-informatical analysis of the high-affinity K+ transporter gene PutHKT2;1 from the halophyte Puccinellia tenuiflora. Acta Prataculturae Sinica, 2013, 22(2): 140-149. 李剑, 张金林, 王锁民, 等. 小花碱茅HKT2;1基因全长cDNA的克隆与生物信息学分析. 草业学报, 2013, 22(2): 140-149. [70] Wang R, Jing W, Xiao L Y, et al. The rice high-affinity potassium transporter1;1 is involved in salt tolerance and regulated by an MYB-type transcription factor. Plant Physiology, 2015, 168(3): 1076-1090. [71] Kabayashi N I, Yamaji N, Yamamoto H, et al. OsHKT1;5 mediates Na+ exclusion in the vasculature to protect leaf blades and reproductive tissues from salt toxicity in rice. Plant Journal, 2017, 91(4): 657-670. [72] Jabnoune M, Espeout S, Mieulet D, et al. Diversity in expression patterns and functional properties in the rice HKT transporter family. Plant Physiology, 2009, 150(4): 1955-1971. [73] Golldack D, Su H, Quigley F, et al. Characterization of a HKT-type transporter in rice as a general alkali cation transporter. The Plant Journal, 2002, 31(4): 529-542. [74] Zhang C, Li H J, Wang J Y, et al. The rice high-affinity K+ transporter OsHKT2;4 mediates Mg2+ homeostasis under high-Mg2+ conditions in transgenic Arabidopsis. Frontier in Plant Science, 2017, 8: 1823. [75] Berthomieu P, Conéjéro G, Nublat A, et al. Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. Embo Journal, 2003, 22(9): 2004-2014. [76] Zhang H, Kim M S, Sun Y, et al. Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Molecular Plant-Microbe Interactions, 2008, 21(6): 737-744. [77] An D, Chen J G, Gao Y Q, et al. AtHKT1 drives adaptation of Arabidopsis thaliana to salinity by reducing floral sodium content. PLoS Genetics, 2017, 13(10): e1007086. [78] Busoms S, Paajanen P, Marburger S, et al. Fluctuating selection on migrant adaptive sodium transporter alleles in coastal Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 2018, 12. doi: 10.1073/pnas.1816964115. [79] Rus A, Lee B H, Munoz-Mayor A, et al. AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta. Plant Physiology, 2004, 136(1): 2500-2511. [80] Gassmann W, Rubio F, Schroeder J I.Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1. The Plant Journal, 1996, 10(5): 869-882. [81] Laurie S, Feeney K A, Maathuis F J, et al. A role for HKT1 in sodium uptake by wheat roots. The Plant Journal, 2002, 32(2): 139-149. [82] Horie T, Costa A, Kim T H, et al. Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth. Embo Journal, 2007, 26(12): 3003-3014. [83] Takahashi R, Liu S, Takano T.Cloning and functional comparison of a high-affinity K+ transporter gene PhaHKT1 of salt-tolerant and salt-sensitive reed plants. Journal of Experimental Botany, 2007, 58(15/16): 4387-4395. [84] Gong J M, Waner D A, Horie T, et al. Microarray-based rapid cloning of an ion accumulation deletion mutant in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(43): 15404-15409. [85] Horie T, Yoshida K, Nakayama H, et al. Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. Plant Journal, 2001, 27(2): 129-138. [86] Hazzouri K M, Khraiwesh B, Amiri K M, et al. Mapping of HKT1;5 gene in barley using GWAS approach and its implication in salt tolerance mechanism. Frontier in Plant Science, 2018, 9: 156. [87] Wang T T, Ren Z J, Liu Z Q, et al. SbHKT1;4, a member of the high-affinity potassium transporter gene family from Sorghum bicolor, functions to maintain optimal Na+/K+ balance under Na+ stress. Journal of Integrative Plant Biology, 2014, 56(3): 315-332. [88] Liu W H, Fairbairn D J, Reid R J, et al. Characterization of two HKT1 homologues from Eucalyptus camaldulensis that display intrinsic osmosensing capability. Plant Physiology, 2001, 127(1): 283-294. [89] Sassi A, Mieulet D, Khan I, et al. The rice monovalent cation transporter OsHKT2;4: Revisited ionic selectivity. Plant Physiology, 2012, 160(1): 498-510. [90] Mian A, Oomen R J, Lsyenkov S, et al. Over-expression of an Na+-and K+-permeable HKT transporter in barley improves salt tolerance. Plant Journal, 2011, 68(3): 468-479. [91] Sentenac H, Bonneaud N, Minet M, et al. Cloning and expression in yeast of a plant potassium ion transport system. Science, 1992, 256: 663-665. [92] Anderson J A, Huprikar S S, Kochian L V, et al. Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(9): 3736-3740. [93] Chérel I.Regulation of K+ channel activities in plants: From physiological to molecular aspects. Journal of Experimental Botany, 2004, 55(396): 337-351. [94] Pilot G, Pratelli R, Gaymard F, et al. Five-group distribution of the Shaker-like K+ channel family in higher plants. Journal of Molecular Evolution, 2003, 56(4): 418-434. [95] Maathuis F, Ichida A M, Sanders D, et al. Roles of higher plant K+ channels. Plant Physiology, 1997, 114(4): 1141. [96] Véry A A, Sentenac H.Molecular mechanisms and regulation of K+ transport in higher plants. Annual Review of Plant Biology, 2003, 54: 575-603. [97] Hu J, Hu X K, Yu Q S, et al. Study advances of plant inward rectifying K+ channel AKT1. Pratacultural Science, 2017, 34(4): 813-822. 胡静, 胡小柯, 尉秋实, 等. 植物内整流K+通道AKT1的研究进展. 草业科学, 2017, 34(4): 813-822. [98] Szyroki A, Ivashikina N, Dietrich P, et al. KAT1 is not essential for stomatal opening. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(5): 2917-2921. [99] Cuéllar T, Azeem F, Andrianteranagna M, et al. Potassium transport in developing fleshy fruits: The grapevine inward K+ channel VvK1.2 is activated by CIPK-CBL complexes and induced in ripening berry flesh cells. The Plant Journal, 2013, 73(6): 1006-1018. [100] Obata T, Kitamoto H K, Nakamura A, et al. Rice shaker potassium channel OsKAT1 confers tolerance to salinity stress on yeast and rice cells. Plant Physiology, 2007, 144(4): 1691-1692. [101] Lacombe B, Pilot G, Michard E, et al. A shaker-like K+ channel with weak rectification is expressed in both source and sink phloem tissues of Arabidopsis. Plant Cell, 2000, 12(6): 837-851. [102] Mouline K, Véry A A, Gaymard F, et al. Pollen tube development and competitive ability are impaired by disruption of a Shaker K+ channel in Arabidopsis. Genes & Development, 2002, 16(3): 339-350. [103] Ma Q, Hu J, Zhou X R, et al. ZxAKT1 is essential for K+ uptake and K+/Na+ homeostasis in the succulent xerophyte Zygophyllum xanthoxylum. The Plant Journal, 2017, 90(1): 48-60. [104] Ache P, Becker D, Deeken R, et al. VFK1, a Vicia faba K+ channel involved in phloem unloading. The Plant Journal, 2001, 27(6): 571-580. [105] Philippar K, Fuchs I, Lüthen H, et al. Auxin-induced K+ channel expression represents an essential step in coleoptile growth and gravitropism. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(21): 12186-12191. [106] Downey P, Szabò I, Ivashikina N, et al. KDC1, a novel carrot root hair K+ channel: Cloning, characterization, and expression in mamalian cells. Journal of Biological Chemistry, 2000, 275(50): 39420-39426. [107] Costa A, Armando C, Serena V, et al. Potassium and carrot embryogenesis: Are K+ channels necessary for development? Plant Molecular Biology, 2004, 54(6): 837-852. [108] Philippar K, Ivashikina N, Ache P, et al. Auxin activates KAT1 and KAT2, two K+-channel genes expressed in seedlings of Arabidopsis thaliana. The Plant Journal, 2004, 37(6): 815-827. [109] Langer K, Levchenko V, Frommol J, et al. The poplar K+ channel KPT1 is associated with K+ uptake during stomatal opening and bud development. The Plant Journal, 2004, 37(6): 828-838. [110] Arend M, Stinzing A, Wind C, et al. Polar-localised poplar K+ channel capable of controlling electrical properties of wood-forming cells. Planta, 2005, 223: 140-148. [111] Hu J, Ma Q, Kumar T, et al. ZxSKOR is important for salinity and drought tolerance of Zygophyllum xanthoxylum by maintaining K+ homeostasis. Plant Growth Regulation, 2016, 80(2): 195-205. [112] Bertl A, Reid J D, Sentenac H, et al. Functional comparison of plant inward-rectifier channels expressed in yeast. Journal of Experimental Botany, 1997, 48: 405-413. [113] Ten Hoopen G M, George A, Martinez A, et al . Compatibility between Clonostachys isolates with a view to mixed inocula for biocontrol. Journal of Experimental Botany, 2010, 102(5): 1204-1215. [114] Pratelli R, Lacombe B, Torregrosa L, et al. A grapevine gene encoding a guard cell K+ channel displays developmental regulation in the grapevine berry. Plant Physiology, 2002, 128(2): 564-577. [115] Langer K, Ache P, Geiger D, et al. Poplar potassium transporters capable of controlling K+ homeostasis and K+-dependent xylogenesis. The Plant Journal, 2002, 32(6): 997-1009. [116] Duby G, Hosy E, Fizames C, et al. AtKC1, a conditionally targeted Shaker-type subunit, regulates the activity of plant K+ channels. The Plant Journal, 2008, 53(1): 115-123. [117] Naso A, Dreyer I, Pedemonte L, et al. The role of the C-terminus for functional heteromerization of the plant channel KDC1. Biophysical Journal, 2009, 96(10): 4063-4074. [118] Jeanguenin L, Alcon C, Duby G, et al. AtKC1 is a general modulator of Arabidopsis inward Shaker channel activity. The Plant Journal, 2011, 67(4): 570-582. [119] Reintanz B, Szyroki A, Ivashikina N, et al. AtKC1, a silent Arabidopsis potassium channel alpha-subunit modulates root hair K+ influx. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(6): 4079-4084. [120] Wang X P, Chen L M, Liu W X, et al. AtKC1 and CIPK23 synergistically modulate AKT1-mediated low-potassium stress responses in Arabidopsis. Plant Physiology, 2016, 170(4): 2264-2277. [121] Xicluna J, Lacombe B, Dreyer I, et al. Increased functional diversity of plant K+ channels by preferential heteromerization of the Shaker-like subunits AKT2 and KAT2. Journal of Biological Chemistry, 2007, 282(1): 486-494. [122] Lebaudy A, Pascaud F, Véry A A, et al. Preferential KAT1-KAT2 heteromerization determines inward K+ current properties in Arabidopsis guard cells. Journal of Biological Chemistry, 2010, 285(9): 6265-6274. [123] Johansson I, Wulfetange K, Porée F, et al. External K+ modulates the activity of the Arabidopsis potassium channel SKOR via an unusual mechanism. The Plant Journal, 2006, 46(2): 269-281. [124] Sano T, Becker D, Ivashikina N, et al. Plant cells must pass a K+ threshold to re-enter the cell cycle. The Plant Journal, 2007, 50(3): 401-413. [125] Dreyer B, Grønhaug K.Uncertainty, flexibility, and sustained competitive advantage. Journal of Business Research, 2004, 57(5): 484-494. [126] Xu J, Li H D, Chen L Q, et al. A protein kinase, interacting with two Calcineurin B-like Proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell, 2006, 125(7): 1347-1360. [127] Lee S C, Lan W Z, Kim B G, et al. A protein phosphorylation/dephosphorylation network regulates a plant potassium channel. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(40): 15959-15964. [128] Alnayef M, Bose J, Shabala S.Potassium uptake and homeostasis in plants grown under hostile environmental conditions, and its regulation by CBL-interacting protein kinases. Salinity Responses and Tolerance in Plants, 2018, 1: 137-158. [129] Gajdanowicz P, Michard E, Sandmann M, et al. Potassium (K+) gradients serve as a mobile energy source in plant vascular tissues. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(2): 864-869. [130] Held K, Pascaud F, Eckert C, et al. Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex. Cell Research, 2011, 21(7): 1116-1130. [131] Boscari A, Clement M, Volkov V, et al. Potassium channels in barley: Cloning, functional characterization and expression analyses in relation to leaf growth and development. Plant, Cell & Environment, 2009, 32(12): 1761-1777. [132] Ahmad I, Mian A, Maathuis F J.Overexpression of the rice AKT1 potassium channel affects potassium nutrition and rice drought tolerance. Journal of Experimental Botany, 2016, 67(9): 2689-2698. [133] Su Y H, North H, Grignon C, et al. Regulation by external K+ in a maize inward shaker channel targets transport activity in the high concentration range. Plant Cell, 2005, 17(5): 1532-1548. [134] Büchsenschütz K, Marten I, Becker D, et al. Differential expression of K+ channels between guard cells and subsidiary cells within the maize stomatal complex. Planta, 2005, 222(6): 968-976. [135] Zhang Y D, Véry A A, Wang L M, et al. A K+ channel from salt-tolerant melon inhibited by Na+. New Phytologist, 2011, 189(3): 856-868. [136] Ivashikina N, Deeken R, Fischer S, et al. AKT2/3 subunits render guard cell K+ channels Ca2+ sensitive. Journal of general physiology, 2005, 125(5): 483-492. [137] Formentin E, Varotto S, Costa A, et al. DKT1, a novel K+ channel from carrot, forms functional heteromeric channels with KDC1. FEBS Letters, 2004, 573(1/2/3): 61-67. [138] Ardie S W, Liu S, Takano T.Expression of the AKT1-type K+ channel gene from Puccinellia tenuiflora, PutAKT1, enhances salt tolerance in Arabidopsis. Plant Cell Reports, 2010, 29(8): 865-874. [139] Wang P, Guo Q, Wang Q, et al. PtAKT1 maintains selective absorption capacity for K+, over Na+, in halophyte Puccinellia tenuiflora, under salt stress. Acta Physiologiae Plantarum, 2015, 37(5): 100. [140] Hartje S, Zimmolermann S, Klonus D, et al. Functional characterisation of LKT1, a K+ uptake channel from tomato root hairs, and comparison with the closely related potato inwardly rectifying K+ channel SKT1 after expression in Xenopus oocytes. Planta, 2000, 210(5): 723-731. [141] Formentin E, Naso A, Varotto S, et al. KDC2, a functional homomeric potassium channel expressed during carrot embryogenesis. FEBS Letters, 2006, 580(21): 5009-5015. [142] Moon S J, Kim H Y, Hwang H, et al. A dominant negative OsKAT2 mutant delays light-induced stomatal opening and improves drought tolerance without yield penalty in rice. Frontiers in Plant Science, 2017, 8: 772. [143] Hwang H, Yoon J, Kim H Y, et al. Unique features of two potassium channels, OsKAT2 and OsKAT3, expressed in rice guard cells. PLoS One, 2013, 8(8): e72541. [144] Chérel I, Michard E, Platet N, et al. Physical and functional interaction of the Arabidopsis K+ channel AKT2 and phosphatase AtPP2CA. Plant Cell, 2002, 14(5): 1133-1146. [145] Deeken R, Geiger D, Frommol J, et al. Loss of the AKT2/3 potassium channel affects sugar loading into the phloem of Arabidopsis. Planta, 2002, 216(2): 334-344. [1 |