[1] Steinrucken T V, Bissett A, Powell J R, et al. Endophyte community composition is associated with dieback occurrence in an invasive tree. Plant and Soil, 2015, 405(1/2): 1-13. [2] Omacini M, Chaneton E J, Ghersa C M, et al. Symbiotic fungal endophytes control insect host-parasite interaction webs. Nature, 2001, 409: 78-81. [3] LepŠ J, Těšitel J. Root hemiparasites in productive communities should attack competitive host, and harm them to make regeneration gaps. Journal of Vegetation Science, 2015, 26(3): 407-408. [4] Salonen V, Lammi A. Effects of root hemiparasitic infection on host performance: Reduced flower size and increased flower asymmetry. Ecoscience, 2001, 8(2): 185-190. [5] Shen H, Xu S J, Hong L, et al. Growth but not photosynthesis response of a host plant to infection by a holoparasitic plant depends on nitrogen supply. PLoS ONE, 2013, 8(10): e75555. [6] Lehtonen P, Helander M, Wink M, et al. Transfer of endophyte-origin defensive alkaloids from a grass to a hemiparasitic plant. Ecology Letters, 2005, 8(12): 1256-1263. [7] Candia A B, Medel R, Fontúrbel F E. Indirect positive effects of a parasitic plant on host pollination and seed dispersal. Oikos, 2014, 123(11): 1371-1376. [8] Li J M, Jin Z X, Hagedorn F, et al. Short-term parasite-infection alters already the biomass, activity and functional diversity of soil microbial communities. Scientific Reports, 2014, 4: 6895-6902. [9] Saikkonen K, Wäli P, Helander M, et al. Evolution of endophyte-plant symbioses. Trends in Plant Science, 2004, 9(6): 275-280. [10] Xia C, Zhang X X, Christensen M J, et al. Epichloë endophyte affects the ability of powdery mildew (Blumeria graminis) to colonise drunken horse grass (Achnatherum inebrians). Fungal Ecology, 2015, 16: 26-33. [11] Schardl C L, Leuchtmann A, Spiering M J. Symbioses of grasses with seedborne fungal endophytes. Annual Review of Plant Biology, 2004, 55: 315-340. [12] Faeth S H, Saari S. Fungal grass endophytes and arthropod communities: Lessons from plant defence theory and multitrophic interactions. Fungal Ecology, 2012, 5(3): 364-371. [13] Vázquez-de-Aldana B R, Zabalgogeazcoa I, García-Criado B. An Epichloë endophyte affects the competitive ability of Festuca rubra against other grassland species. Plant and Soil, 2013, 362(1/2): 201-213. [14] Clay K, Holah J. Fungal endophyte symbiosis and plant diversity in successional fields. Science, 1999, 285: 1742-1744. [15] Clay K, Schardl C. Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. The American Naturalist, 2002, 160(S4): S99-S127. [16] Malinowski D P, Belesky D P. Adaptations of endophyte-infected cool-season grasses to environmental stresses: Mechanisms of drought and mineral stress tolerance. Crop Science, 2000, 40(4): 923-940. [17] Czarnoleski M, Pawlik K, Olejniczak P, et al. An endophytic fungus reduces herbivory in its recently colonised grass host: A food-choice experiment on common voles, weeping alkaligrass and Epichloë typhina. Plant Ecology, 2012, 213(6): 1049-1053. [18] Ma M Z, Christensen M J, Nan Z B. Effects of the endophyte Epichloë festucae var. lolii of perennial ryegrass (Lolium perenne) on indicators of oxidative stress from pathogenic fungi during seed germination and seedling growth. European Journal of Plant Pathology, 2014, 141(3): 571-583. [19] Zhang X X, Li C J, Nan Z B. Effects of cadmium stress on growth and anti-oxidative systems in Achnatherum inebrians symbiotic with Neotyphodium gansuense. Journal of Hazardous Materials, 2010, 175(1): 703-709. [20] Zhou L Y, Li C J, Zhang X X, et al. Effects of cold shocked Epichloë infected Festuca sinensis on ergot alkaloid accumulation. Fungal Ecology, 2015, 14: 99-104. [21] Nagabhyru P, Dinkins R D, Wood C L, et al. Tall fescue endophyte effects on tolerance to water-deficit stress. BMC Plant Biology, 2013, 13(1): 127. [22] Wen L, Dong S K, Li Y Y, et al. Effect of degradation intensity on grassland ecosystem services in the alpine region of Qinghai-Tibetan Plateau, China. PLoS ONE, 2013, 8(3): e58432. [23] Dong Q M, Zhao X Q, Wu G L, et al. A review of formation mechanism and restoration measures of “black-soil-type” degraded grassland in the Qinghai-Tibetan Plateau. Environmental Earth Sciences, 2013, 70(5): 2359-2370. [24] Wang W Y, Wang Q J. The structure and plant species diversity of the degraded ecosystems in a alpine Kobresia meadow. Acta Prataculturae Sinica, 2001, 10(3): 8-14. 王文颖, 王启基. 高寒嵩草草甸退化生态系统植物群落结构特征及物种多样性分析. 草业学报, 2001, 10(3): 8-14. [25] Qian C S, Chen H Y. Flora of China. Beijing: Science Press, 1963. 钱崇澍, 陈焕镛. 中国植物志. 北京: 科学出版社, 1963. [26] Bao G S, Suetsugu K, Wang H S, et al. Effects of the hemiparasitic plant Pedicularis kansuensis on plant community structure in a degraded grassland. Ecological Research, 2015, 30(3): 507-515. [27] Rümer S, Cameron D D, Wacker R, et al. An anatomical study of the haustoria of Rhinanthus minor attached to roots of different hosts. Flora-Morphology, Distribution, Functional Ecology of Plants, 2007, 202(3): 194-200. [28] Shang Z H, Long R J. Formation causes and recovery of the “black soil type” degraded alpine grassland in Qinghai-Tibetan Plateau. Frontiers of Agriculture in China, 2007, 1(2): 197-202. [29] Liu Y Y, Hu Y K, Yu J M, et al. Study on harmfulness of Pedicularis myriophylla and its control measures. Arid Zone Research, 2008, 25(6): 778-782. 柳妍妍, 胡玉昆, 于建梅, 等. 轮叶马先蒿危害现状及防除对策. 干旱区研究, 2008, 25(6): 778-782. [30] Li C J, Nan Z B, Liu Y, et al. Methodology of endophyte detection of drunken horse grass (Achnatherum inebrians). Edible Fungi of China, 2008, 27(Supplement): 16-19. 李春杰, 南志标, 刘勇, 等. 醉马草内生真菌检测方法的研究. 中国食用菌, 2008, 27(Supplement): 16-19. [31] Yao X, Li X Z, Zhu X X, et al. Effects of two fungicides on Neotyphodium seed-borne fungal endophyte of Festuca sinensis. Pratacultural Science, 2013, 30(10): 1517-1522. 姚祥, 李秀璋, 朱小晓, 等. 两种杀菌剂对中华羊茅种传内生真菌的影响. 草业科学, 2013, 30(10): 1517-1522. [32] Klaren C H, Janssen G. Physiological changes in the hemiparasite Rhinanthus serotinus before and after attachment. Physiologia Plantarum, 1978, 42(1): 151-155. [33] Song M L, Li X Z, Saikkonen K, et al. An asexual Epichloë endophyte enhances waterlogging tolerance of Hordeum brevisubulatum. Fungal Ecology, 2015, 13: 44-52. [34] Suetsugu K, Takeuchi Y, Futai K, et al. Host selectivity, haustorial anatomy and impact of the invasive parasite Parentucellia viscosa on floodplain vegetative communities in Japan. Botanical Journal of the Linnean Society, 2012, 170(1): 69-78. [35] Li A R, Guan K Y. Arbuscular mycorrhizal fungi may serve as another nutrient strategy for some hemiparasitic species of Pedicularis (Orobanchaceae). Mycorrhiza, 2008, 18(8): 429-436. [36] Hunt R, Parsons I T. A computer program for deriving growth-functions in plant growth-analysis. Journal of Applied Ecology, 1974, 11(1): 297-307. [37] Thompson J N. The geographic mosaic of coevolution. Chicago: University of Chicago Press, 2005. [38] Sachs J L, Skophammer R G, Regus J U. Evolutionary transitions in bacterial symbiosis. Proceedings of the National Academy of Sciences, 2011, 108(Supplement 2): 10800-10807. [39] Kingma S A, Santema P, Taborsky M, et al. Group augmentation and the evolution of cooperation. Trends in Ecology & Evolution, 2014, 29(8): 476-484. [40] Bronstein J L. The exploitation of mutualisms. Ecology Letters, 2001, 4(3): 277-287. [41] Wang Y S, Wu H, Sun S. Persistence of pollination mutualisms in plant-pollinator-robber systems. Theoretical Population Biology, 2012, 81(3): 243-250. [42] Gange A C, Brown V K, Aplin D M. Multitrophic links between arbuscular mycorrhizal fungi and insect parasitoids. Ecology Letters, 2003, 6(12): 1051-1055. [43] Herzberger A J, Meiners S J, Towey J B, et al. Plant-microbe interactions change along a tallgrass prairie restoration chronosequence. Restoration Ecology, 2015, 23(3): 220-227. [44] Saikkonen K, Faeth S H, Helander M, et al. Fungal endophytes: A continuum of interactions with host plants. Annual Review of Ecology and Systematics, 1998, 29(1): 319-343. [45] Yang Y Q, Li X, Kong X X, et al. Transcriptome analysis reveals diversified adaptation of Stipa purpurea along a drought gradient on the Tibetan Plateau. Functional & Integrative Genomics, 2015, 15(3): 295-307. [46] Xu J, Li W L, Zhang C H, et al. Variation in seed germination of 134 common species on the eastern Tibetan Plateau: Phylogenetic, life history and environmental correlates. PLoS ONE, 2014, 9(6): e98601. [47] Saikkonen K, Saari S, Helander M. Defensive mutualism between plants and endophytic fungi? Fungal Diversity, 2010, 41(1): 101-113. [48] Bao G S, Saikkonen K, Wang H S, et al. Does endophyte symbiosis resist allelopathic effects of an invasive plant in degraded grassland? Fungal Ecology, 2015, 17: 114-125. [49] Bais H P, Vepachedu R, Gilroy S, et al. Allelopathy and exotic plant invasion: From molecules and genes to species interactions. Science, 2003, 301: 1377-1380. [50] Strauss S Y, Irwin R E. Ecological and evolutionary consequences of multispecies plant-animal interactions. Annual Review of Ecology, Evolution, and Systematics, 2004, 35: 435-466. [51] Li A R, Smith S E, Smith F A, et al. Inoculation with arbuscular mycorrhizal fungi suppresses initiation of haustoria in the root hemiparasite Pedicularis tricolor. Annals of Botany, 2012, 109(6): 1075-1080. [52] Soler R, Van der Putten W H, Harvey J A, et al. Root herbivore effects on aboveground multitrophic interactions: Patterns, processes and mechanisms. Journal of Chemical Ecology, 2012, 38(6): 755-767. |