[1] Hodkinson T R, Chase M W, Renvoize S A. Characterization of a genetic resource collection for Miscanthus (Saccharinae, Andropogoneae, Poaceae) using AFLP and ISSR PCR. Annals of Botany, 2002, 89(5): 627-636. [2] Hastings A, Clifton-Brown J C, Wattenbach M, et al. Future energy potential of Miscanthus in Europe. GCB Bioenergy, 2009, 1(2): 180-196. [3] Powlson D S, Riche A B, Shield I. Biofuels and other approaches for decreasing fossil fuel emissions from agriculture. Annals of Applied Biology, 2005, 146(2): 193-201. [4] Greef J M, Deuter M, Jung C, et al. Genetic diversity of European Miscanthus species revealed by AFLP fingerprinting. Genetic Resources and Crop Evolution, 1997, 44(2): 185-195. [5] Chen S L, Renvoize S A. Miscanthus//Wu Z Y. Flora of China. Beijing: Science Press, 2006: 581-583. [6] Sang T, Zhu W X. China's bioenergy potential. GCB Bioenergy, 2011, 3(2): 79-90. [7] Clifton-Brown J C, Lewandowski I. Screening Miscanthus genotypes in field trials to optimise biomass yield and quality in Southern Germany. European Journal of Agronomy, 2002, 16(2): 97-110. [8] Li X Y, Qian Q, Fu Z M, et al. Control of tillering in rice. Nature, 2003, 422: 618-621. [9] Liu X. Cloning and functional analysis of yield-related gene TaSPLs from common wheat. Taiyuan: Shanxi University, 2014. 刘霞. 小麦产量相关基因TaSPLs的克隆和功能分析. 太原: 山西大学, 2014. [10] Jia F X. Effects of planting density on effective spike formation of the tiller and yield of winter wheat. Tai'an: Shandong Agricultural University, 2018. 贾飞霞. 种植密度对冬小麦分蘖成穗及产量的影响. 泰安: 山东农业大学, 2018. [11] Richards R A. A tiller inhibition gene in wheat and its effect on plant growth. Australian Journal of Agricultural Research, 1988, 39(5): 749-757. [12] Spielmeyer W, Richards R A. Comparative mapping of wheat chromosome 1AS which contains the tiller inhibition gene (tin) with rice chromosome 5S. Theoretical and Applied Genetics, 2004, 109(6): 1303-1310. [13] Peng Z S, Yen C, Yang J L. Genetic control of oligo-culms in common wheat. Wheat Information Service, 1998, 86: 19-24. [14] Kuraparthy V, Sood S, Dhaliwal H S, et al. Identification and mapping of a tiller inhabition gene (tin3) in wheat. Theoretical and Applied Genetic, 2007, 114: 285-294. [15] Zhang Q H, Zhang X K, Liu W H, et al. The inheritance for effective tiller emergence in wheat. Journal of Triticeae Crops, 2008, (4): 573-576. 张倩辉, 张晓科, 刘伟华, 等. 小麦有效分蘖数的遗传分析. 麦类作物学报, 2008, (4): 573-576. [16] Wu A D. Study on genetic diversity of Miscanthus. Haikou: Hainan University, 2011. 吴安迪. 芒草遗传多样性研究. 海口: 海南大学, 2011. [17] Zhao N X, Xiao Y F. Resources and utilization of Miscanthus of Anhui Province. Plant Science Journal, 1990, 8(4): 374-382. 赵南先, 萧运峰. 安徽省的芒属植物资源及其开发利用. 植物科学学报, 1990, 8(4): 374-382. [18] Atienza S G, Satovic Z, Petersen K K, et al. Identification of QTLs associated with yield and its components in Miscanthus sinensis Anderss. Euphytica, 2003, 132(3): 353-361. [19] Atienza S G, Ramirez M C, Martin A. Mapping QTLs controlling flowering date in Miscanthus sinensis Anderss. Cereal Research Communications, 2003, 31(3/4): 265-271. [20] Atienza S G, Satovic Z, Petersen K K, et al. Identification of QTLs influencing agronomic traits in Miscanthus sinensis Anderss. I. Total height, flag-leaf height and stem diameter. Theoretical and Applied Genetics, 2003, 107: 123-129. [21] Atienza S G, Satovic Z, Petersen K K, et al. Influencing combustion quality in Miscanthus sinensis Anderss: Identification of QTLs for calcium, phosphorus and sulphur content. Plant Breeding, 2003, 122: 141-145. [22] Liu S, Clark L V, Swaminathan K, et al. High-density genetic map of Miscanthus sinensis reveals inheritance of zebra stripe. GCB Bioenergy, 2015, 8: 616-630. [23] Gifford J M, Chae W B, Swaminathan K, et al. Mapping the geneome of Miscanthus sinensis for QTL associated with biomass productivity. GCB Bioenergy, 2015, 7(4): 797-810. [24] Dong H, Liu S, Clark L V, et al. Genetic mapping of biomass yield in three interconnected Miscanthus populations. GCB Bioenergy, 2018, 10(3): 165-185. [25] Ge C X, Ai X, Jia S F, et al. Interspecific genetic maps in Miscanthus floridulus and M. sacchariflorus accelerate detection of QTLs associated with plant height and inflorescence. Molecular Genetics and Genomics, 2019, 294(1): 35-45. [26] Van Ooijen J W. MAPQTL? 6, software for the mapping of quantitative trait loci in experimental populations of diploid species. Netherlands: Wageningen, 2009. [27] Jorgensen U. Genotypic variation in dry matter accumulation and content of N, K and Cl in Miscanthus in Denmark. Biomass and Bioenergy, 1997, 12(3): 155-169. [28] Deng N D, Liu Q B, Jiang J X, et al. Summary on establishment of core collection of Miscanthus floridulous. Crop Research, 2010, 24(2): 130-134. 邓念丹, 刘清波, 蒋建雄, 等. 五节芒核心种质的构建研究概述. 作物研究, 2010, 24(2): 130-134. [29] Ge C X, Liu X M, Liu S M, et al. Miscanthus sp.: Genetic diversity and phylogeny in China. Plant Molecular Biology Reporter, 2017, 35(6): 600-610. [30] Zhu Y Y, Ai X, Jiang J X, et al. Creation and identification of artificial hybrids between Miscanthus floridulus and M. sacchariflorus. Chinese Journal of Grassland, 2013, 35(2): 31-36. 朱玉叶, 艾辛, 蒋建雄, 等. 五节芒与荻人工杂交种的创建与鉴定研究. 中国草地学报, 2013, 35(2): 31-36. [31] Kim H K, Luquet D, Van O E, et al. Regulation of tillering in sorghum: Genotypic effects. Annals of Botany, 2010, 106: 57-67. [32] Zhao D, Irey M, Laborde C, et al. Identifying physiological and yield-related traits in sugarcane and energy cane. Agronomy Journal, 2017, 109(3): 927-937. [33] Zhao H, Huai Z, Xiao Y, et al. Natural variation and genetic analysis of the tiller angle gene MsTAC1 in Miscanthus sinensis. Planta, 2014, 240(1): 161-175. [34] Ai X, Jiang J X, Xiao L, et al. Genetic and correlation analysis of main agronomic traits in F1 population derived from crossing between Micanthus sacchariflorus and M.floridulus. Acta Agrestia Sinica, 2017, 25(4): 814-822. 艾辛, 蒋建雄, 肖亮, 等. 荻与五节芒种间杂交F1群体主要农艺性状的遗传及相关性分析. 草地学报, 2017, 25(4): 814-822. [35] Das M K, Fuentes R G, Taliaferro C M. Genetic variability and trait relationships in switchgrass. Crop Science, 2004, 44(2): 443-448. [36] Boe A, Beck D L. Yield components of biomass in switchgrass. Crop Science, 2008, 48(4): 1036-1311. [37] Guo Y, Kong F M, Xu Y F, et al. QTL mapping for seedling traits in wheat grown under varying concentrations of N, P and K nutrients. Theoretical & Applied Genetics, 2012, 124(5): 851-865. [38] Zhang Z, Li J, Muhammad J, et al. Genome-wide quantitative trait loci reveal the genetic basis of cotton fiber quality and yield-related traits in a G. hirsutum recombinant inbred line population. Plant Biotechnology Journal, 2019, 18(1): 239-253. [39] Higgins R H, Thurber C S, Assaranurak I, et al. Multiparental mapping of plant height and flowering time QTL in partially isogenic sorghum families. G3-Genes Genomes Genetics, 2014, 4(9): 1593-1602. [40] Hori K, Matsubara K, Yano M. Genetic control of flowering time in rice: Integration of Mendelian genetics and genomics. Theoretical and Applied Genetics, 2016, 129(12): 2241-2252. [41] Guan S Y, Fei J B, Liu Z B, et al. Application of molecular marker-assisted selection (MAS) in maize resistance breeding. Journal of Jilin Agricultural University, 2018, 40(4): 25-33. 关淑艳, 费建博, 刘智博, 等. 分子标记辅助选择(MAS)在玉米抗逆育种中的应用. 吉林农业大学学报, 2018, 40(4): 25-33. [42] Zhang A N, Liu Y, Wang F M, et al. Pyramiding and evaluation of brown planthopper resistance genes in water-saving and drought-resistance restorer line. Acta Agronomica Sinica, 2019, 45(11): 1764-1769. 张安宁, 刘毅, 王飞名, 等. 节水抗旱稻恢复系的抗褐飞虱分子标记辅助选育及抗性评价. 作物学报, 2019, 45(11): 1764-1769. [43] Song W, Zhang M, Yang J Z, et al. Pyramiding resistance to powdery mildew and fusarium head blight (FHB) by molecular marker-assisted. Acta Phytopathologica Sinica, 2010, 40(6): 655-658. 宋伟, 张敏, 杨继芝, 等. 分子标记辅助选择小麦抗白粉病兼抗赤霉病聚合体. 植物病理学报, 2010, 40(6): 655-658. [44] Chen X W, Chen D F, Li Y J. Effect of marker-assisted selection on protein content in wheat. Acta Agriculturae Boreali-Sinica, 2007, (2): 39-42. 陈喜文, 陈德富, 李永君. 小麦蛋白质含量分子标记辅助选择的效果分析. 华北农学报, 2007, (2): 39-42. |