[1] Yamasaki K, Kigawa T, Inoue M, et al. Structures and evolutionary origins of plant-specific transcription factor DNA-binding domains. Plant Physiology and Biochemistry, 2008, 46(3): 394-401. [2] Wang M, Zhuang J, Zou Z W, et al. Overexpression of a Camellia sinensis DREB transcription factor gene (CsDREB) increases salt and drought tolerance in transgenic Arabidopsis thaliana. Journal of Plant Biology, 2017, 60(5): 452-461. [3] Li K Y, Zhu H L. Research progress of DREB/CBF transcription factor in response to abiotic-stresses in plants. Scientia Silvae Sinica, 2011, 47(1): 124-134. 李科友, 朱海兰. 植物非生物逆境胁迫DREB/CBF转录因子的研究进展. 林业科学, 2011, 47(1): 124-134. [4] Xu Z S, Chen M, Li L C, et al. Functions and application of the AP2/ERF transcription factor family in crop improvement. Journal of Integrative Plant Biology, 2011, 53(7): 570-585. [5] Li X S, Liang Y Q, Gao B, et al. Research advance of the plant stress-related DREB transcriptional factor genes. Molecular Plant Breeding, 2017, (7): 143-153. 李小双, 梁玉青, 高贝, 等. 植物抗逆相关转录因子基因DREB的研究展望. 分子植物育种, 2017, (7): 143-153. [6] Shinozaki K, Yamaguchi-shinozaki K. Molecular responses to dehydration and low temperature: Differences and cross-talk between two stress signaling pathways. Current Opinion in Plant Biology, 2000, (3): 217-223. [7] Dong C J, Liu J Y. The Arabidopsis EAR-motif-containing protein RAP2.1 functions as an active transcriptional repressor to keep stress responses under tight control. BMC Plant Biology, 2010, 10: 47. [8] Ohta M, Matsui K, Hiratsu K, et al. Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. The Plant Cell, 2001, 13(8): 1959-1968. [9] Zhou L, Dong C J, Liu J Y. Increased resistance of Arabidopsis to cold and salt stresses by suppresing the transcription repressors of the A-5 group among the DREB subfamily transcription factors through artificial microRNA. China Biotechnology, 2011, 31(5): 34-41. 周露, 董春娟, 刘进元. 人工microRNA干扰DREB亚族A-5组转录抑制子基因增强了拟南芥对低温和高盐胁迫的耐受性. 中国生物工程杂志, 2011, 31(5): 34-41. [10] Bouaziz D, Pirrello J, Amor H B, et al. Ectopic expression of dehydration responsive element binding proteins (StDREB2) confers higher tolerance to salt stress in potato. Plant Physiology and Biochemistry, 2012, 60(3): 98-108. [11] Chen M, Wang Q Y, Cheng X G, et al. GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochemical and Biophysical Research Communications, 2007, 353(2): 299-305. [12] Li H, Zhang D Y, Li X S, et al. Novel DREB A-5 subgroup transcription factors from desert moss (Syntrichia caninervis) confers multiple abiotic stress tolerance to yeast. Journal of Plant Physiology, 2016, 194: 45-53. [13] Liang Y Q, Li X S, Zhang D Y, et al. ScDREB8, a novel A-5 type of DREB gene in the desert moss Syntrichia caninervis, confers salt tolerance to Arabidopsis. Plant Physiology and Biochemistry, 2017, 120: 242-251. [14] He M. The selection of new cultivars of ground-grow chrysanthemum. Harbin: Northeast Forestry University, 2001. 何淼. 露地栽培菊新品种的选育. 哈尔滨: 东北林业大学, 2001. [15] Liu X D, Ding B, Zhang X F, et al. Experiment on regional cultivation of Dendranthema×grandiflor tzrel. Journal of Northeast Forestry University, 1996, 24(5): 50-56. 刘晓东, 丁冰, 张敩方, 等. 地被菊的区域栽培试验. 东北林业大学学报, 1996, 24(5): 50-56. [16] Chen F D, Fang W M, Zhao H B, et al. New varieties of chrysanthemum—ground cover varieties. Acta Horticulturae Sinica, 2005, 32(6): 1167. 陈发棣, 房伟民, 赵宏波, 等. 菊花新品种—地被菊系列. 园艺学报, 2005, 32(6): 1167. [17] Ding B, Tong Y L, Li Y H. New chrysanthemum cultivars ‘Huomeigui’ and ‘Shenyun’. Acta Horticulturae Sinica, 2007, 34(3) : 803. 丁兵, 佟友丽, 李玉花. 地被菊新品种‘火玫瑰’和‘神韵’. 园艺学报, 2007, 34(3): 803. [18] Kagale S, Links M G, Rozwadowski K. Genome-wide analysis of ethylene-responsive element binding factor-associated amphiphilic repression motif-containing transcriptional regulators in Arabidopsis. Plant Physiology, 2010, 152(6): 1109-1134. [19] Kazan K. Negative regulation of defence and stress genes by EAR-motif-containing repressors. Trends in Plant Science, 2006, 11(3): 109-112. [20] Li H S, Sun Q, Zhao S J. Principles and techniques of plant physiological and biochemical experiments. Beijing: Higher Education Press, 2000. 李合生, 孙群, 赵世杰. 植物生理生化试验原理和技术. 北京: 高等教育出版社, 2000. [21] Zhang Z L, Qu W J. Experimental instruction of plant physiology. Beijing: Higher Education Press, 2003. 张志良, 瞿伟菁. 植物生理学实验指导. 北京: 高等教育出版社, 2003. [22] Huang B, Liu J Y. A cotton dehydration responsive element binding protein functions as a transcriptional repressor of DRE-mediated gene expression. Biochemical and Biophysical Research Communications, 2006, 343(4): 1023-1031. [23] Dong C J, Huang B, Liu J Y. The cotton dehydration-responsive element binding protein GhDBP1 contains an EAR-motif and is involved in the defense response of Arabidopsis to salinity stress. Functional Plant Biology, 2010, 37(1): 64-73. [24] Chen S P, Gao Y B, Liang Y, et al. Effect of endophyte infection on the concentrations of free proline and ABA of leaves of Lolium pernne L. under water stress. Acta Ecologica Sinica, 2001, 21(12): 1964-1972. 陈世苹, 高玉葆, 梁宇, 等. 水分胁迫下内生真菌感染对黑麦草叶内游离脯氨酸和脱落酸含量的影响. 生态学报, 2001, 21(12): 1964-1972. [25] Liang W, Ma X, Wan P, et al. Plant salt-tolerance mechanism: A review. Biochemical and Biophysical Research Communications, 2017, 495(1): 286-291. [26] Qi J, Song C P, Wang B, et al. ROS signaling and stomatal movement in plant responses to drought stress and pathogen attack. Journal of Integrative Plant Biology, 2018, 60(9): 805-826. [27] Koramutla M K, Kaur A, Negi M, et al. Elicitation of jasmonate-mediated host defense in Brassica juncea (L.) attenuates population growth of mustard aphid Lipaphis erysimi (Kalt.). Planta, 2014, 240(1): 177-194. [28] Ray P, Huang B W, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal, 2012, 24(5): 981-990. |