Welcome to Acta Prataculturae Sinica ! Today is Share:

Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (1): 69-80.DOI: 10.11686/cyxb2021250

Previous Articles     Next Articles

Biomass allocation, water use characteristics, and photosynthetic light response of four Commelinaceae plants under different light intensities

Qing XUE(), Bin CHEN, Xiao-mei YANG, Yu-jia YANG, Zi-wei LI, Shan BO, Miao HE()   

  1. Department of Landscape Architecture,Northeast Forestry University,Harbin 150040,China
  • Received:2021-06-22 Revised:2021-09-08 Online:2021-12-01 Published:2021-12-01
  • Contact: Miao HE

Abstract:

The aim of this study was to explore the effects of different light intensities on the biomass allocation, water use characteristics, and photosynthetic light response of Commelinaceae plants. The experimental materials were ramets of Commelina purpureaTradescantia fluminensis ‘Variegata’, Tradescantia zebrina, and Tradescantia fluminensis ‘Vairidia’. These materials were subjected to light at five different intensities, which were obtained using a shading net. It was found that, as the light intensity decreased (shading intensity 25%-75%), the aboveground biomass of the four plants initially increased and then decreased (P<0.05). The total biomass also increased and then decreased as the light intensity decreased, except that of C. purpurea, which showed no significant change. The effects of different light intensities on biomass allocation and the crown∶root ratio of the four plants were diverse, however, the proportion of the stem to total biomass tended to increase in all four plants as the light intensity decreased. The midday water potential increased with decreasing light intensity, and was strongly related to the trend in the water loss rate. Both C. purpurea and T. zebrina showed low rates of water loss. As the amount of photosynthetically active radiation increased, the net photosynthetic rates of the four plants first increased and then gradually stabilized. As the light intensity decreased, the maximum net photosynthetic rate, apparent quantum efficiency, and light saturation point of the four plants tended to first increase and then decrease. Compared with T. fluminensis ‘Variegata’ and ‘Vairidia’, C. purpurea and T. zebrina showed higher values for maximum net photosynthetic rate, apparent quantum efficiency, and light saturation point, and a lower dark respiration rate. The water use efficiencies of C. purpurea and T. zebrina did not differ significantly among the light intensity treatments, but were higher than those of T. fluminensis ‘Variegata’ and ‘Vairidia’. Together, the results suggest that these four plants are able to make more effective use of weak light resources by adjusting their morphology, biomass allocation, and photosynthetic light responses in weak light (shade density of 25%-75%). Our results show that C. purpurea and T. zebrina are better able to cope with low light intensity than are T. fluminensis ‘Variegata’ and ‘Vairidia’.

Key words: light conditions, Commelinaceae, biomass allocation, water loss rate, photosynthetic light response