Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (8): 188-198.DOI: 10.11686/cyxb2021304
Yong ZHANG(), Xiao-xia TIAN, Ming-li ZHENG, Pei-chun MAO, Lin MENG()
Received:
2021-08-10
Revised:
2021-11-10
Online:
2022-08-20
Published:
2022-07-01
Contact:
Lin MENG
Yong ZHANG, Xiao-xia TIAN, Ming-li ZHENG, Pei-chun MAO, Lin MENG. Analysis of drought and salt resistance of EeHKT1;4 gene from Elytrigia elongata in Arabidopsis[J]. Acta Prataculturae Sinica, 2022, 31(8): 188-198.
功能Function | 引物名称Primer name | 序列Sequences (5'-3') |
---|---|---|
载体构建 Construction of expression vector | EeHKT1;4-Xba I | CTAG |
EeHKT1;4-Knp I | CGG | |
EeHKT1;4-F | ATGCAACTCCCAAGTCATAACA | |
EeHKT1;4-R | CTAACTAAGCTTCCAGGTCCTGC | |
qPCR | qEeHKT1;4-F | CTACTGATCGGCTGCAACAGCAGC |
qEeHKT1;4-R | ATGGAGAGGGAGATTGTAGCAGAG | |
qAtSOS1-F | TCGTTTCAGCCAAATCAGAAAGT | |
qAtSOS1-R | GCTACATAGTTCGGAGTTCCACA | |
qAtNHX1-F | GACTCCTTCATGCGACCCG | |
qAtNHX1-R | CCACGTTACCCTCAAGCCTTAC | |
qAtP5CS1-F | TACACAGGCCCTCCAAGTGA | |
qAtP5CS1-R | CTTGATTTGTCGCCGAATGT | |
qAtRD29B-F | GGAGAGAGCAGAGAGGCTCA | |
qAtRD29B-R | CCGTTGACCACCGAGATAGT | |
qAtACTIN -F | AGCACTTGCACCAAGCAGCATG | |
qAtACTIN -R | ACGATTCCTGGACCTGCCTCATC |
Table 1 The primer sequence and application used in this study
功能Function | 引物名称Primer name | 序列Sequences (5'-3') |
---|---|---|
载体构建 Construction of expression vector | EeHKT1;4-Xba I | CTAG |
EeHKT1;4-Knp I | CGG | |
EeHKT1;4-F | ATGCAACTCCCAAGTCATAACA | |
EeHKT1;4-R | CTAACTAAGCTTCCAGGTCCTGC | |
qPCR | qEeHKT1;4-F | CTACTGATCGGCTGCAACAGCAGC |
qEeHKT1;4-R | ATGGAGAGGGAGATTGTAGCAGAG | |
qAtSOS1-F | TCGTTTCAGCCAAATCAGAAAGT | |
qAtSOS1-R | GCTACATAGTTCGGAGTTCCACA | |
qAtNHX1-F | GACTCCTTCATGCGACCCG | |
qAtNHX1-R | CCACGTTACCCTCAAGCCTTAC | |
qAtP5CS1-F | TACACAGGCCCTCCAAGTGA | |
qAtP5CS1-R | CTTGATTTGTCGCCGAATGT | |
qAtRD29B-F | GGAGAGAGCAGAGAGGCTCA | |
qAtRD29B-R | CCGTTGACCACCGAGATAGT | |
qAtACTIN -F | AGCACTTGCACCAAGCAGCATG | |
qAtACTIN -R | ACGATTCCTGGACCTGCCTCATC |
1 | Munns R, James R A, Xu B, et al. Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nature Biotechnology, 2012, 30(4): 360-364. |
2 | Zorb C, Geilfus C M, Dietz K J. Salinity and crop yield. Plant Biology (Stuttg), 2019, 21(Suppl 1): 31-38. |
3 | Zhu J K. Abiotic stress signaling and responses in plants. Cell, 2016, 167(2): 313-324. |
4 | Demidchik V. Mechanisms and physiological roles of K+ efflux from root cells. Journal of Plant Physiology, 2014, 171(9): 696-707. |
5 | Qi Z, Spalding E P. Protection of plasma membrane K+ transport by the salt overly sensitive1 Na+-H+ antiporter during salinity stress. Plant Physiology, 2004, 136(1): 2548-2555. |
6 | Munns R. Comparative physiology of salt and water stress. Plant Cell and Environment, 2002, 25(2): 239-250. |
7 | Shabala S, Pottosin I. Regulation of potassium transport in plants under hostile conditions: Implications for abiotic and biotic stress tolerance. Physiologia Plantarum, 2014, 151(3): 257-279. |
8 | Rubio F, Nieves-Cordones M, Horie T, et al. Doing 'business as usual' comes with a cost: Evaluating energy cost of maintaining plant intracellular K+ homeostasis under saline conditions. New Phytologist, 2020, 225(3): 1097-1104. |
9 | Raddatz N, Morales D L R L, Lindahl M, et al. Coordinated transport of nitrate, potassium, and sodium. Frontiers in Plant Science, 2020, 11: 247. |
10 | Shabala S. Learning from halophytes: Physiological basis and strategies to improve abiotic stress tolerance in crops. Annals of Botany, 2013, 112(7): 1209-1221. |
11 | Maathuis F J. Sodium in plants: Perception, signalling, and regulation of sodium fluxes. Journal of Experimental Botany, 2014, 65(3): 849-858. |
12 | Very A A, Nieves-Cordones M, Daly M,et al. Molecular biology of K+ transport across the plant cell membrane: What do we learn from comparison between plant species. Journal of Plant Physiology, 2014, 171(9): 748-769. |
13 | Tounsi S, Ben A S, Masmoudi K, et al. Characterization of two HKT1;4 transporters from Triticum monococcum to elucidate the determinants of the wheat salt tolerance Nax1 QTL. Plant and Cell Physiology, 2016, 57(10): 2047-2057. |
14 | Huang S, Spielmeyer W, Lagudah E S, et al. Comparative mapping of HKT genes in wheat, barley, and rice, key determinants of Na+ transport, and salt tolerance. Journal of Experimental Botany, 2008, 59(4): 927-937. |
15 | Platten J D, Cotsaftis O, Berthomieu P, et al. Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends in Plant Science, 2006, 11(8): 372-374. |
16 | Byrt C S, Xu B, Krishnan M, et al. The Na+ transporter, TaHKT1;5-D, limits shoot Na+ accumulation in bread wheat. Plant Journal, 2014, 80(3): 516-526. |
17 | Suzuki K, Yamaji N, Costa A, et al. OsHKT1;4-mediated Na+ transport in stems contributes to Na+ exclusion from leaf blades of rice at the reproductive growth stage upon salt stress. BMC Plant Biology, 2016, 16: 22. |
18 | Horie T, Hauser F, Schroeder J I. HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends in Plant Science, 2009, 14(12): 660-668. |
19 | Asins M J, Villalta I, Aly M M, et al. Two closely linked tomato HKT coding genes are positional candidates for the major tomato QTL involved in Na+/K+ homeostasis. Plant Cell and Environment, 2013, 36(6): 1171-1191. |
20 | Sunarpi, Horie T, Motoda J, et al. Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant Journal, 2005, 44(6): 928-938. |
21 | Ren Z H, Gao J P, Li L G, et al. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics, 2005, 37(10): 1141-1146. |
22 | Hauser F, Horie T. A conserved primary salt tolerance mechanism mediated by HKT transporters: A mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant Cell and Environment, 2010, 33(4): 552-565. |
23 | Huang S, Spielmeyer W, Lagudah E S, et al. A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat. Plant Physiology, 2006, 142(4): 1718-1727. |
24 | Huang L, Kuang L, Wu L, et al. The HKT transporter HvHKT1;5 negatively regulates salt tolerance. Plant Physiology, 2020, 182(1): 584-596. |
25 | Colmer T D, Flowers T J, Munns R. Use of wild relatives to improve salt tolerance in wheat. Journal of Experimental Botany, 2006, 57(5): 1059-1078. |
26 | Zhang L. Cloning EeHKT1;4 gene in Elytrigia elongata and its transformation into tobacco. Taiyuan: Shanxi Agricultural University, 2015. |
张琳. 长穗偃麦草高亲和K+转运蛋白基因EeHKT1;4的克隆及对烟草遗传转化研究. 太原: 山西农业大学, 2015. | |
27 | Li X D, Shang Y S, Wu Y D, et al. Overexpression of Medicago sativa Multi protein Bridging Factor 1c (MsMBF1c) enhances thermotolerance of Arabidopsis. Acta Prataculturae Sinica, 2019, 28(10): 187-189. |
李小冬, 尚以顺, 武语迪, 等. 紫花苜蓿MsMBF1c基因在拟南芥中表达提高转基因植株的耐热性. 草业学报, 2019, 28(10): 187-198. | |
28 | Hou J R, Duan X Y, Li Z, et al. Cloning and erpression analysis of TrSAMDC1 in white clover. Acta Prataculturae Sinica, 2020, 29(8): 170-178. |
侯洁茹, 段晓玥, 李州, 等. 白三叶TrSAMDC1克隆及表达分析. 草业学报, 2020, 29(8): 170-178. | |
29 | Gao Z Q, Wang J, Tang Y C, et al. Cloning and functional of the gene NtUFGT in Nitraria tangutorum. Acta Prataculturae Sinica, 2020, 29(5): 159-170. |
高子奇, 王佳, 汤宇晨, 等. 唐古特白刺类黄酮-3-O-葡萄糖基转移酶基因(NtUFGT)的克隆与功能分析. 草业学报, 2020, 29(5): 159-170. | |
30 | Ningning L, Chao D, Binjie M, et al. Functional analysis of ion transport properties and salt tolerance mechanisms of RtHKT1 from the recretohalophyte Reaumuria trigyna. Plant and Cell Physiology, 2019, 60(1): 85-106. |
31 | Stadtman E R, Levine R L. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids, 2003, 25(3/4): 207-218. |
32 | Vranová E, Inzé D, Van Breusegem F. Signal transduction during oxidative stress. Journal of Experimental Botany, 2002, 53: 1227-1236. |
33 | Carlos F G B, Juan C D R. Quantitative determination of superoxide in plant leaves using a modified NBT staining method. Phytochemical Analysis, 2011, 22(3): 268-271. |
34 | Vandenabeele S, Vanderauwera S, Vuylsteke M, et al. Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thaliana. Plant Journal, 2004, 39(1): 45-58. |
35 | Apse M P, Aharon G S, Snedden W A, et al. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science, 1999, 285(5431): 1256-1258. |
36 | Xu Y G, Zhan Y G. Progress of the research on plant drought-resistant mechanism and related genes. Biotechnology Bulletin, 2009(2): 11-17. |
徐云刚, 詹亚光. 植物抗旱机理及相关基因研究进展. 生物技术通报, 2009(2): 11-17. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||