Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (12): 77-89.DOI: 10.11686/cyxb2023064
Previous Articles Next Articles
Jun-lin LIU1(), Yong HAO1(), Chun-yan LIU2, Yan SHAO1, Lang DING1
Received:
2023-03-02
Revised:
2023-05-04
Online:
2023-12-20
Published:
2023-10-18
Contact:
Yong HAO
Jun-lin LIU, Yong HAO, Chun-yan LIU, Yan SHAO, Lang DING. Prediction of shear strength of root-containing soil by a back-propagation neural network optimized with the fireworks algorithm[J]. Acta Prataculturae Sinica, 2023, 32(12): 77-89.
组 | 平均重量直径 MWD (mm) | 大团聚体含量 R0.25 (%) | 几何平均直径 GMD (mm) | 土壤分形维数 Dd | 根表面积 | 平均直径 | 黏聚力 Cohesion (c, kPa) |
---|---|---|---|---|---|---|---|
1 | 1.252 | 0.856 | 1.082 | 2.342 | 23.527 | 0.728 | 13.6 |
2 | 1.224 | 0.849 | 1.074 | 2.329 | 22.706 | 0.729 | 13.3 |
3 | 1.364 | 0.898 | 1.130 | 2.310 | 25.505 | 0.498 | 14.6 |
4 | 1.315 | 0.879 | 1.110 | 2.317 | 24.213 | 0.462 | 14.5 |
5 | 1.105 | 0.831 | 0.981 | 2.357 | 11.468 | 0.396 | 12.9 |
6 | 1.070 | 0.811 | 0.982 | 2.345 | 11.561 | 0.308 | 11.8 |
7 | 0.905 | 0.741 | 0.964 | 2.433 | 3.645 | 0.285 | 10.2 |
8 | 0.910 | 0.736 | 0.972 | 2.423 | 3.321 | 0.204 | 10.6 |
9 | 1.231 | 0.867 | 1.042 | 2.365 | 22.244 | 0.676 | 12.9 |
10 | 1.285 | 0.858 | 1.041 | 2.345 | 21.702 | 0.762 | 13.8 |
? | ? | ? | ? | ? | ? | ? | ? |
46 | 0.929 | 0.723 | 0.975 | 1.805 | 2.221 | 0.261 | 11.2 |
47 | 1.233 | 0.813 | 1.014 | 1.479 | 23.455 | 0.794 | 13.8 |
48 | 1.321 | 0.874 | 1.189 | 1.769 | 24.899 | 0.459 | 14.2 |
49 | 1.058 | 0.821 | 0.981 | 1.729 | 10.845 | 0.359 | 12.5 |
50 | 0.919 | 0.718 | 0.970 | 1.798 | 2.525 | 0.276 | 10.9 |
Table 1 Training samples
组 | 平均重量直径 MWD (mm) | 大团聚体含量 R0.25 (%) | 几何平均直径 GMD (mm) | 土壤分形维数 Dd | 根表面积 | 平均直径 | 黏聚力 Cohesion (c, kPa) |
---|---|---|---|---|---|---|---|
1 | 1.252 | 0.856 | 1.082 | 2.342 | 23.527 | 0.728 | 13.6 |
2 | 1.224 | 0.849 | 1.074 | 2.329 | 22.706 | 0.729 | 13.3 |
3 | 1.364 | 0.898 | 1.130 | 2.310 | 25.505 | 0.498 | 14.6 |
4 | 1.315 | 0.879 | 1.110 | 2.317 | 24.213 | 0.462 | 14.5 |
5 | 1.105 | 0.831 | 0.981 | 2.357 | 11.468 | 0.396 | 12.9 |
6 | 1.070 | 0.811 | 0.982 | 2.345 | 11.561 | 0.308 | 11.8 |
7 | 0.905 | 0.741 | 0.964 | 2.433 | 3.645 | 0.285 | 10.2 |
8 | 0.910 | 0.736 | 0.972 | 2.423 | 3.321 | 0.204 | 10.6 |
9 | 1.231 | 0.867 | 1.042 | 2.365 | 22.244 | 0.676 | 12.9 |
10 | 1.285 | 0.858 | 1.041 | 2.345 | 21.702 | 0.762 | 13.8 |
? | ? | ? | ? | ? | ? | ? | ? |
46 | 0.929 | 0.723 | 0.975 | 1.805 | 2.221 | 0.261 | 11.2 |
47 | 1.233 | 0.813 | 1.014 | 1.479 | 23.455 | 0.794 | 13.8 |
48 | 1.321 | 0.874 | 1.189 | 1.769 | 24.899 | 0.459 | 14.2 |
49 | 1.058 | 0.821 | 0.981 | 1.729 | 10.845 | 0.359 | 12.5 |
50 | 0.919 | 0.718 | 0.970 | 1.798 | 2.525 | 0.276 | 10.9 |
组 | 平均重量直径 MWD (mm) | 大团聚体含量 R0.25 (%) | 几何平均直径 GMD (mm) | 土壤分形维数(Dd) | 根表面积 | 平均直径 | 黏聚力 Cohesion (kPa) |
---|---|---|---|---|---|---|---|
1 | 0.907 | 0.761 | 0.931 | 2.411 | 2.775 | 0.265 | 10.6 |
2 | 0.938 | 0.764 | 0.923 | 2.423 | 3.053 | 0.233 | 10.9 |
3 | 1.101 | 0.831 | 0.988 | 2.322 | 11.642 | 0.354 | 11.1 |
4 | 1.063 | 0.811 | 0.969 | 2.301 | 10.706 | 0.398 | 10.9 |
5 | 0.921 | 0.752 | 0.910 | 2.398 | 3.692 | 0.291 | 10.5 |
6 | 0.930 | 0.723 | 0.975 | 1.805 | 2.221 | 0.261 | 11.2 |
7 | 1.234 | 0.814 | 1.015 | 1.481 | 23.456 | 0.795 | 13.9 |
8 | 1.322 | 0.875 | 1.190 | 1.742 | 24.900 | 0.458 | 14.1 |
9 | 1.059 | 0.822 | 0.985 | 1.728 | 10.846 | 0.361 | 12.6 |
10 | 0.920 | 0.719 | 0.972 | 1.799 | 2.527 | 0.277 | 10.5 |
Table 2 Prediction samples
组 | 平均重量直径 MWD (mm) | 大团聚体含量 R0.25 (%) | 几何平均直径 GMD (mm) | 土壤分形维数(Dd) | 根表面积 | 平均直径 | 黏聚力 Cohesion (kPa) |
---|---|---|---|---|---|---|---|
1 | 0.907 | 0.761 | 0.931 | 2.411 | 2.775 | 0.265 | 10.6 |
2 | 0.938 | 0.764 | 0.923 | 2.423 | 3.053 | 0.233 | 10.9 |
3 | 1.101 | 0.831 | 0.988 | 2.322 | 11.642 | 0.354 | 11.1 |
4 | 1.063 | 0.811 | 0.969 | 2.301 | 10.706 | 0.398 | 10.9 |
5 | 0.921 | 0.752 | 0.910 | 2.398 | 3.692 | 0.291 | 10.5 |
6 | 0.930 | 0.723 | 0.975 | 1.805 | 2.221 | 0.261 | 11.2 |
7 | 1.234 | 0.814 | 1.015 | 1.481 | 23.456 | 0.795 | 13.9 |
8 | 1.322 | 0.875 | 1.190 | 1.742 | 24.900 | 0.458 | 14.1 |
9 | 1.059 | 0.822 | 0.985 | 1.728 | 10.846 | 0.361 | 12.6 |
10 | 0.920 | 0.719 | 0.972 | 1.799 | 2.527 | 0.277 | 10.5 |
土样 | 样本数 Sample size | 黏聚力 Cohesion (c, kPa) | 内摩擦角 Internalfriction angle |
---|---|---|---|
含根土Root-bearing soil | 60 | 12.7 | 10.2 |
素土Plain soil | 10 | 9.2 | 10.3 |
Table 3 Statistical statistics of direct shear test
土样 | 样本数 Sample size | 黏聚力 Cohesion (c, kPa) | 内摩擦角 Internalfriction angle |
---|---|---|---|
含根土Root-bearing soil | 60 | 12.7 | 10.2 |
素土Plain soil | 10 | 9.2 | 10.3 |
处理 Treatment | 土样 | 样本数 | 颗粒与统计 | ||||
---|---|---|---|---|---|---|---|
>2 mm | 2~1 mm | 1~0.5 mm | 0.5~0.25 mm | ≤0.25 mm | |||
干筛 | 含根土 | 30 | 36.84 | 32.67 | 19.07 | 5.81 | 5.61 |
素土 | 30 | 26.44 | 31.27 | 22.11 | 8.90 | 11.28 | |
湿筛 | 含根土Root-bearing soil | 30 | 20.02 | 20.53 | 20.60 | 21.37 | 17.48 |
素土 | 30 | 14.02 | 15.40 | 18.63 | 20.21 | 31.74 |
Table 4 Statistical result of particles in agglomeration test
处理 Treatment | 土样 | 样本数 | 颗粒与统计 | ||||
---|---|---|---|---|---|---|---|
>2 mm | 2~1 mm | 1~0.5 mm | 0.5~0.25 mm | ≤0.25 mm | |||
干筛 | 含根土 | 30 | 36.84 | 32.67 | 19.07 | 5.81 | 5.61 |
素土 | 30 | 26.44 | 31.27 | 22.11 | 8.90 | 11.28 | |
湿筛 | 含根土Root-bearing soil | 30 | 20.02 | 20.53 | 20.60 | 21.37 | 17.48 |
素土 | 30 | 14.02 | 15.40 | 18.63 | 20.21 | 31.74 |
项目 Item | 平均重量直径MWD | 大团聚体 含量R0.25 | 几何平均直径GMD | 土壤分形 维数Dd | 根 | |||
---|---|---|---|---|---|---|---|---|
长度 | 表面积SA | 平均直径 | 体积Volume | |||||
黏聚力Cohesion | 0.414 | 0.380 | 0.301 | -0.146 | 0.422 | 0.395 | 0.164 | 0.174 |
Table 5 Correlation coefficient between each factor and cohesion
项目 Item | 平均重量直径MWD | 大团聚体 含量R0.25 | 几何平均直径GMD | 土壤分形 维数Dd | 根 | |||
---|---|---|---|---|---|---|---|---|
长度 | 表面积SA | 平均直径 | 体积Volume | |||||
黏聚力Cohesion | 0.414 | 0.380 | 0.301 | -0.146 | 0.422 | 0.395 | 0.164 | 0.174 |
样本 | 项目 Item | BP | PSO-BP | FWA-BP | ||||||
---|---|---|---|---|---|---|---|---|---|---|
S=3 | S=4 | S=13 | S=3 | S=4 | S=13 | S=3 | S=4 | S=13 | ||
1 | 期望值 | 10.6 | 10.6 | 10.6 | 10.6 | 10.6 | 10.6 | 10.6 | 10.6 | 10.6 |
预测值 | 12.6 | 12.6 | 11.6 | 11.2 | 11.2 | 11.0 | 11.3 | 10.8 | 10.9 | |
相对误差 | 18.62 | 18.81 | 9.87 | 6.12 | 6.02 | 4.24 | 6.77 | 1.71 | 2.62 | |
2 | 期望值 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 |
预测值 | 12.6 | 12.6 | 11.6 | 11.2 | 11.2 | 11.1 | 11.3 | 11.0 | 10.9 | |
相对误差 | 15.43 | 15.43 | 6.86 | 3.11 | 3.21 | 2.03 | 3.86 | 0.61 | 0.00 | |
3 | 期望值 | 11.1 | 11.1 | 11.1 | 11.1 | 11.1 | 11.1 | 11.1 | 11.1 | 11.1 |
预测值 | 12.5 | 12.6 | 11.8 | 13.0 | 13.0 | 12.8 | 12.7 | 13.2 | 11.6 | |
相对误差 | 13.04 | 13.91 | 6.59 | 17.20 | 17.50 | 15.32 | 14.83 | 18.76 | 4.46 | |
4 | 期望值 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 |
预测值 | 12.5 | 12.6 | 11.7 | 12.6 | 12.5 | 12.5 | 12.1 | 12.7 | 11.3 | |
相对误差 | 15.13 | 15.94 | 7.77 | 15.78 | 14.32 | 14.71 | 11.35 | 16.62 | 3.56 | |
5 | 期望值 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 |
预测值 | 12.6 | 12.6 | 11.7 | 11.3 | 11.2 | 11.5 | 11.3 | 10.9 | 10.7 | |
相对误差 | 19.79 | 19.64 | 11.03 | 7.61 | 6.71 | 9.06 | 7.78 | 4.01 | 2.26 | |
6 | 期望值 | 11.2 | 11.2 | 11.2 | 11.2 | 11.2 | 11.2 | 11.2 | 11.2 | 11.2 |
预测值 | 12.6 | 12.0 | 11.7 | 11.7 | 11.2 | 11.3 | 11.3 | 11.2 | 11.3 | |
相对误差 | 12.70 | 7.16 | 4.16 | 4.39 | 0.30 | 1.00 | 0.98 | 0.00 | 1.13 | |
7 | 期望值 | 13.9 | 13.9 | 13.4 | 13.9 | 13.9 | 13.9 | 13.9 | 13.9 | 13.9 |
预测值 | 12.6 | 12.6 | 13.4 | 13.3 | 13.4 | 13.7 | 13.1 | 13.7 | 13.4 | |
相对误差 | -9.13 | -9.70 | -3.79 | -4.18 | -3.34 | -1.47 | -5.85 | -1.74 | -3.49 | |
8 | 期望值 | 14.1 | 14.1 | 14.1 | 14.1 | 14.1 | 14.1 | 14.1 | 14.1 | 14.1 |
预测值 | 12.6 | 12.7 | 13.4 | 14.3 | 14.3 | 14.1 | 13.5 | 13.9 | 14.3 | |
相对误差 | -10.99 | -10.06 | -4.73 | 1.58 | 1.45 | -0.24 | -4.22 | -1.26 | 1.45 | |
9 | 期望值 | 12.6 | 12.6 | 12.6 | 12.6 | 12.6 | 12.6 | 12.6 | 12.6 | 12.6 |
预测值 | 12.6 | 12.6 | 12.2 | 13.6 | 12.5 | 12.5 | 12.6 | 12.6 | 12.6 | |
相对误差 | 0.00 | 0.00 | -2.84 | 7.67 | -1.05 | -1.05 | 0.00 | 0.00 | 0.00 | |
10 | 期望值 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 |
预测值 | 12.6 | 12.0 | 11.7 | 11.7 | 11.2 | 11.2 | 11.3 | 11.1 | 11.2 | |
相对误差 | 20.18 | 14.20 | 11.12 | 11.46 | 6.90 | 6.99 | 7.70 | 6.12 | 7.44 | |
最大误差 | 20.18 | 19.64 | 11.12 | 17.20 | 17.50 | 9.06 | 14.83 | 18.76 | 7.44 |
Table 6 Comparison of prediction results of different hidden layer neurons
样本 | 项目 Item | BP | PSO-BP | FWA-BP | ||||||
---|---|---|---|---|---|---|---|---|---|---|
S=3 | S=4 | S=13 | S=3 | S=4 | S=13 | S=3 | S=4 | S=13 | ||
1 | 期望值 | 10.6 | 10.6 | 10.6 | 10.6 | 10.6 | 10.6 | 10.6 | 10.6 | 10.6 |
预测值 | 12.6 | 12.6 | 11.6 | 11.2 | 11.2 | 11.0 | 11.3 | 10.8 | 10.9 | |
相对误差 | 18.62 | 18.81 | 9.87 | 6.12 | 6.02 | 4.24 | 6.77 | 1.71 | 2.62 | |
2 | 期望值 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 |
预测值 | 12.6 | 12.6 | 11.6 | 11.2 | 11.2 | 11.1 | 11.3 | 11.0 | 10.9 | |
相对误差 | 15.43 | 15.43 | 6.86 | 3.11 | 3.21 | 2.03 | 3.86 | 0.61 | 0.00 | |
3 | 期望值 | 11.1 | 11.1 | 11.1 | 11.1 | 11.1 | 11.1 | 11.1 | 11.1 | 11.1 |
预测值 | 12.5 | 12.6 | 11.8 | 13.0 | 13.0 | 12.8 | 12.7 | 13.2 | 11.6 | |
相对误差 | 13.04 | 13.91 | 6.59 | 17.20 | 17.50 | 15.32 | 14.83 | 18.76 | 4.46 | |
4 | 期望值 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 |
预测值 | 12.5 | 12.6 | 11.7 | 12.6 | 12.5 | 12.5 | 12.1 | 12.7 | 11.3 | |
相对误差 | 15.13 | 15.94 | 7.77 | 15.78 | 14.32 | 14.71 | 11.35 | 16.62 | 3.56 | |
5 | 期望值 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 |
预测值 | 12.6 | 12.6 | 11.7 | 11.3 | 11.2 | 11.5 | 11.3 | 10.9 | 10.7 | |
相对误差 | 19.79 | 19.64 | 11.03 | 7.61 | 6.71 | 9.06 | 7.78 | 4.01 | 2.26 | |
6 | 期望值 | 11.2 | 11.2 | 11.2 | 11.2 | 11.2 | 11.2 | 11.2 | 11.2 | 11.2 |
预测值 | 12.6 | 12.0 | 11.7 | 11.7 | 11.2 | 11.3 | 11.3 | 11.2 | 11.3 | |
相对误差 | 12.70 | 7.16 | 4.16 | 4.39 | 0.30 | 1.00 | 0.98 | 0.00 | 1.13 | |
7 | 期望值 | 13.9 | 13.9 | 13.4 | 13.9 | 13.9 | 13.9 | 13.9 | 13.9 | 13.9 |
预测值 | 12.6 | 12.6 | 13.4 | 13.3 | 13.4 | 13.7 | 13.1 | 13.7 | 13.4 | |
相对误差 | -9.13 | -9.70 | -3.79 | -4.18 | -3.34 | -1.47 | -5.85 | -1.74 | -3.49 | |
8 | 期望值 | 14.1 | 14.1 | 14.1 | 14.1 | 14.1 | 14.1 | 14.1 | 14.1 | 14.1 |
预测值 | 12.6 | 12.7 | 13.4 | 14.3 | 14.3 | 14.1 | 13.5 | 13.9 | 14.3 | |
相对误差 | -10.99 | -10.06 | -4.73 | 1.58 | 1.45 | -0.24 | -4.22 | -1.26 | 1.45 | |
9 | 期望值 | 12.6 | 12.6 | 12.6 | 12.6 | 12.6 | 12.6 | 12.6 | 12.6 | 12.6 |
预测值 | 12.6 | 12.6 | 12.2 | 13.6 | 12.5 | 12.5 | 12.6 | 12.6 | 12.6 | |
相对误差 | 0.00 | 0.00 | -2.84 | 7.67 | -1.05 | -1.05 | 0.00 | 0.00 | 0.00 | |
10 | 期望值 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 |
预测值 | 12.6 | 12.0 | 11.7 | 11.7 | 11.2 | 11.2 | 11.3 | 11.1 | 11.2 | |
相对误差 | 20.18 | 14.20 | 11.12 | 11.46 | 6.90 | 6.99 | 7.70 | 6.12 | 7.44 | |
最大误差 | 20.18 | 19.64 | 11.12 | 17.20 | 17.50 | 9.06 | 14.83 | 18.76 | 7.44 |
期望值 | BP | PSO-BP | FWA-BP | |||
---|---|---|---|---|---|---|
预测值 Predicted value (kPa) | 相对误差 | 预测值 Predicted value (kPa) | 相对误差 | 预测值 Predicted value (kPa) | 相对误差 | |
10.6 | 11.6 | 9.87 | 11.0 | 4.24 | 10.9 | 2.62 |
10.9 | 11.6 | 6.86 | 11.1 | 2.03 | 10.9 | 0.41 |
11.1 | 11.8 | 6.59 | 11.8 | 6.32 | 11.6 | 4.46 |
10.9 | 11.7 | 7.77 | 11.5 | 5.54 | 11.3 | 3.56 |
10.5 | 11.7 | 11.03 | 11.5 | 9.06 | 10.7 | 2.26 |
11.2 | 11.7 | 4.16 | 11.3 | 1.00 | 11.3 | 1.13 |
13.9 | 13.4 | -3.79 | 13.7 | -1.47 | 13.4 | -3.49 |
14.1 | 13.4 | -4.73 | 14.1 | -0.24 | 14.3 | 1.45 |
12.6 | 12.2 | -2.84 | 12.5 | -1.05 | 12.6 | -0.24 |
10.5 | 11.7 | 11.12 | 11.2 | 6.99 | 11.3 | 7.44 |
MRE (%) | 11.12 | 9.06 | 7.44 | |||
ARE (%) | 4.60 | 3.24 | 1.96 |
Table 7 Comparison of predicted values and errors of different neural networks
期望值 | BP | PSO-BP | FWA-BP | |||
---|---|---|---|---|---|---|
预测值 Predicted value (kPa) | 相对误差 | 预测值 Predicted value (kPa) | 相对误差 | 预测值 Predicted value (kPa) | 相对误差 | |
10.6 | 11.6 | 9.87 | 11.0 | 4.24 | 10.9 | 2.62 |
10.9 | 11.6 | 6.86 | 11.1 | 2.03 | 10.9 | 0.41 |
11.1 | 11.8 | 6.59 | 11.8 | 6.32 | 11.6 | 4.46 |
10.9 | 11.7 | 7.77 | 11.5 | 5.54 | 11.3 | 3.56 |
10.5 | 11.7 | 11.03 | 11.5 | 9.06 | 10.7 | 2.26 |
11.2 | 11.7 | 4.16 | 11.3 | 1.00 | 11.3 | 1.13 |
13.9 | 13.4 | -3.79 | 13.7 | -1.47 | 13.4 | -3.49 |
14.1 | 13.4 | -4.73 | 14.1 | -0.24 | 14.3 | 1.45 |
12.6 | 12.2 | -2.84 | 12.5 | -1.05 | 12.6 | -0.24 |
10.5 | 11.7 | 11.12 | 11.2 | 6.99 | 11.3 | 7.44 |
MRE (%) | 11.12 | 9.06 | 7.44 | |||
ARE (%) | 4.60 | 3.24 | 1.96 |
模型 Model | 均方根误差 RMSE | 平均绝对误差 MAE | 平均绝对百分比误差 MAPE (%) |
---|---|---|---|
BP | 0.881678 | 0.774666 | 6.7924 |
PSO-BP | 0.893399 | 0.732057 | 6.4062 |
FWA-BP | 0.779353 | 0.625993 | 5.6679 |
Table 8 Statistical tests of different models
模型 Model | 均方根误差 RMSE | 平均绝对误差 MAE | 平均绝对百分比误差 MAPE (%) |
---|---|---|---|
BP | 0.881678 | 0.774666 | 6.7924 |
PSO-BP | 0.893399 | 0.732057 | 6.4062 |
FWA-BP | 0.779353 | 0.625993 | 5.6679 |
1 | Liu L M, Qiu W M, Xu W N, et al. Discussion on traditional slope protection and ecological slope protection technology. Journal of China Three Gorges University (Natural Sciences), 2007, 99(6): 528-532. |
刘黎明, 邱卫民, 许文年, 等. 传统护坡与生态护坡比较与分析. 三峡大学学报(自然科学版), 2007, 99(6): 528-532. | |
2 | Yang Y H, Wang C H, Liu S Z, et al. Experimental research on improving shear strength of soil in surface landslide by root system of different vegetation type. Research of Soil and Water Conservation, 2007, 61(2): 233-235. |
杨永红, 王成华, 刘淑珍, 等.不同植被类型根系提高浅层滑坡土体抗剪强度的试验研究.水土保持研究, 2007, 61(2): 233-235. | |
3 | Liu X Y, Gui Y, Luo S H, et al. Experimental research on improving shear strength in slope protection by plant root system. Journal of Jiangxi University of Science and Technology, 2013, 34(3): 32-37. |
刘小燕, 桂勇, 罗嗣海, 等. 植物根系固土护坡抗剪强度试验研究.江西理工大学学报, 2013, 34(3): 32-37. | |
4 | Lv J, Gao J R, Wang Y, et al. Effects of different plant revetments on the soil physical feature. Research of Soil and Water Conservation, 2010, 17(3): 101-104, 109. |
吕晶, 高甲荣, 王颖, 等. 不同护坡植物对岸坡土壤性质的影响及效应分析. 水土保持研究, 2010, 17(3): 101-104, 109. | |
5 | Chen C F, Liu H X, Li Y P. Study on grassroots-reinforced soil by laboratory triaxial test. Rock and Soil Mechanics, 2007, 141(10): 2041-2045. |
陈昌富, 刘怀星, 李亚平. 草根加筋土的室内三轴试验研究. 岩土力学, 2007, 141(10): 2041-2045. | |
6 | Lu L X, Zeng B. Enhancement effects of dominant riparian diffuse-rooted plants of Jialing River in Three Gorges reservoir regine on soil anti-scouribility. Journal of Southwest China Normal University (Natural Science Edition), 2006(3): 157-161. |
卢立霞, 曾波. 三峡库区嘉陵江岸生优势须根系植物根系对土壤抗冲性的增强效应研究. 西南师范大学学报(自然科学版), 2006(3): 157-161. | |
7 | Feng G J, Shen F, Li L R, et al. Experimental study on shear strength of root-soil complex. Journal of Southwest China Normal University (Natural Science Edition), 2013, 38(7): 129-133. |
冯国建, 沈凡, 李丽蓉, 等. 根土复合体抗剪强度试验研究. 西南师范大学学报(自然科学版), 2013, 38(7): 129-133. | |
8 | Zuo X F, Wang L, Zheng F L, et al. Effects of freeze-thaw cycles and soil properties on mollisol shear strength in Chinese black soil region. Research of Soil and Water Conservation, 2020, 34(2): 30-35, 42. |
左小锋, 王磊, 郑粉莉, 等. 冻融循环和土壤性质对东北黑土抗剪强度的影响. 水土保持学报, 2020, 34(2): 30-35, 42. | |
9 | Wang R Z, Chen Y, Li T, et al. Root distribution characteristics of Vetiveria zizanioides and Digitaria sanguinalis and their effects on the anti-erodibility of soil in slopelands. Acta Prataculturae Sinica, 2017, 26(7): 45-54. |
王润泽, 谌芸, 李铁, 等. 香根草和马唐的根系特征及对坡地紫色土抗侵蚀性的影响.草业学报, 2017, 26(7): 45-54. | |
10 | Zhang C T, Ma J G, Ding M J, et al. Tensile properties of single root and shear properties of root-soil complex of Bashania qiaojiaensis. Journal of Sichuan Agricultural University, 2022, 40(6): 883-892. |
张春涛, 马建刚, 丁明净, 等. 蔓竹单根抗拉及根-土复合体抗剪特性. 四川农业大学学报, 2022, 40(6): 883-892. | |
11 | Cheng H, Jiang H, Zhang L, et al. Hydraulic separation of the root-soil complex in Festuca arundinacea. Pratacultural Science, 2022, 39(11): 2350-2360. |
程洪, 江辉, 张路, 等.高羊茅根土复合体水力分离研究. 草业科学, 2022, 39(11): 2350-2360. | |
12 | Dang W W,Gao C Z,Dang F N. Research on shear strength index of Xi’an Loess based on improved BP neural network. Journal of Water Resources and Architectural Engineering, 2009, 7(2): 1-4, 13. |
党维维, 高闯洲, 党发宁. 基于改进的BP神经网络对西安黄土抗剪强度指标的研究. 水利与建筑工程学报, 2009, 7(2): 1-4, 13. | |
13 | Jin K H, Yang T, Huo S Y, et al. Research on prediction methods of shear strength of rolled clay based on different PSO-ELM models. Research of Soil and Water Conversation, 2022, 29(3): 213-219, 227. |
金坎辉, 杨涛, 霍树义, 等. 基于不同PSO-ELM模型的碾压黏土抗剪强度预测方法研究. 水土保持研究, 2022, 29(3): 213-219, 227. | |
14 | Jiang W, Ouyang Y, Yan J Z, et al. Inversion iterative correction method for estimating shear strength of rock and soil mass in slope engineering. Rock and Soil Mechanics, 2022, 43(8): 2287-2295. |
江巍, 欧阳晔, 闫金洲, 等. 边坡岩土体抗剪强度的逆向迭代修正反演方法. 岩土力学, 2022, 43(8): 2287-2295. | |
15 | Huang F M, Yin K L, Jiang S H, et al. Landslide susceptibility assessment based on clustering analysis and support vector machine. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 156-167. |
黄发明, 殷坤龙, 蒋水华, 等. 基于聚类分析和支持向量机的滑坡易发性评价. 岩石力学与工程学报, 2018, 37(1): 156-167. | |
16 | Cao Y Y, Su X M, Zhou Z C, et al, Spatial differences in, and factors influencing,the shear strength of typical herb root-soil complexes in the Loess Plateau of China. Acta Prataculturae Sinica, 2023, 32(5): 94-105. |
曹玉莹, 苏雪萌, 周正朝, 等. 黄土高原典型草本植物根-土复合体抗剪性能的空间差异性及其影响因素研究. 草业学报, 2023, 32(5): 94-105. | |
17 | Li T, Wang R Z, Chen Y, et al. Effects of polyacrylamide and grass root system on shear strength and physical properties of purple soil on barren slopes. Acta Prataculturae Sinica, 2018, 27(2): 69-78. |
李铁, 王润泽, 谌芸, 等. PAM和草类根系对荒坡紫色土物理性质与抗剪性能的影响. 草业学报, 2018, 27(2): 69-78. | |
18 | Yang Y C, Mo Y J, Wang Z F, et al. Experimental study on anti-water erosion and shear strength of soil-root composite. Journal of China Agricultural University, 1996(2): 31-38. |
杨亚川, 莫永京, 王芝芳, 等. 土壤-草本植被根系复合体抗水蚀强度与抗剪强度的试验研究. 中国农业大学学报, 1996(2): 31-38. | |
19 | Song L, Zhu H L, Li G R, et al. Comparative Research for two experimental methods to determine soil-root composite shear strength. Research of Soil and Water Conversation, 2016, 23(4): 282-287. |
宋路, 朱海丽, 李国荣, 等. 两种方法测定根-土复合体抗剪强度试验对比研究. 水土保持研究, 2016, 23(4): 282-287. | |
20 | Wang B H, Zhu L Q. Experimental study on shear strength of herbal root-soil composites under different arrangement modes. Journal of Soil and Water Conversation, 2018, 32(6): 118-122. |
王保辉, 朱连奇. 不同布根形式对草本植物根土复合体抗剪强度试验. 水土保持学报, 2018, 32(6): 118-122. | |
21 | Huang Z, Tian F P, Liu Y, et al. Effects of different grassland types on particle size distribution and stability of water stable aggregate on the Loess plateau. Acta Prataculturae Sinica, 2017, 26(11): 216-221. |
黄泽, 田福平, 刘玉, 等. 黄土高原不同草地类型对水稳性团聚体粒径分布及稳定性的影响. 草业学报, 2017, 26(11): 216-221. | |
22 | Luo N, Shu Y G, Chen M J, et al. Soil structure and fractal characteristics of different land categories in a karst rocky desertification area. Acta Prataculturae Sinica, 2020, 29(7): 11-22. |
罗楠, 舒英格, 陈梦军, 等. 喀斯特山区不同草地土壤结构及分形特征. 草业学报, 2020, 29(7): 11-22. | |
23 | Liu W L, Wu J G, Fu M J, et al. Effect of different cultivation years on composition and stability of soil aggregate fractions in orchard. Journal of Soil and Water Conversation, 2014, 28(1): 129-135. |
刘文利, 吴景贵, 傅民杰, 等. 种植年限对果园土壤团聚体分布与稳定性的影响. 水土保持学报, 2014, 28(1): 129-135. | |
24 | Qiu L P, Zhang X C, Zhang J A. Distribution of nutrients and enzymes in Loess Plateau soil aggregates after long-term fertilization. Acta Ecologica Sinica, 2006, 26(2): 364-372. |
邱莉萍, 张兴昌, 张晋爱. 黄土高原长期培肥土壤团聚体中养分和酶的分布. 生态学报, 2006, 26(2): 364-372. | |
25 | Zhang X. Research on traffic prediction of urban road traffic flow date and microblog related to traffic. Tianjin: Tianjin University, 2018. |
张行. 面向城市道路交通流数据与交通微博文本的交通预测研究. 天津: 天津大学, 2018. | |
26 | Tan Y, Shi Y, Tan K C. Fireworks algorithm for optimization. Beijing: Springer-Verlag, 2010: 355-364. |
27 | Najafzadeh M, Barani G A. Comparison of group method of data handling based genetic programming and back propagation systems to predict scour depth around bridge piers. Scientia Iranica, 2011, 18(6): 1207-1213. |
28 | Liu J, Zheng S, Tan Y. Analysis on global convergence and time complexity of fireworks algorithm. Beijing: Institute of Electrical and Electronics Engineers, 2014: 3207-3213. |
29 | Bavel C H M. Mean weight-diameter of soil aggregates as a statistical index of aggregation. Soil Science Society of America Journal, 1950, 14(C): 20-23. |
30 | Dai W Z. A method of multiobjective synthetic evaluation based on artificial neural networks and its applications. Systems Engineering-Theory and Practice, 1999, 19(5): 29-34, 40. |
戴文战. 基于三层BP网络的多指标综合评估方法及应用. 系统工程理论与实践, 1999, 19(5): 29-34, 40. | |
31 | Liu E Q. Classification and detection of household garbage based on deep learning. Taiyuan: Shanxi University, 2020. |
刘恩乾. 基于深度学习的生活垃圾分类和检测. 太原: 山西大学, 2020. | |
32 | He J C. Research on trajectory planning of multi-target manipulator based on practice swarm optimization. Hengyang: University of South China, 2020. |
何建成. 基于粒子群算法多目标机械臂轨迹规划研究. 衡阳: 南华大学, 2020. |
[1] | Yan WEI, You-bin LIU, Xiao-hong LIU, Yun CHEN, Zhe-hao YAN, Yi-zhi DU. Study on shear strength of root-soil composite of Dolichos lablab and Medicago sativa in purple soil region [J]. Acta Prataculturae Sinica, 2023, 32(8): 82-90. |
[2] | Wei-peng HE, Xia-song HU, Chang-yi LIU, Xuan LI, Xi-lai LI, Jiang-tao FU, Hai-jing LU, Fu-cheng YANG, Guo-rong LI. Impact of the different duration years of grazing prohibition on the mechanical strength characteristics of Elymus nutans roots and its composite systems in the Yellow River source region [J]. Acta Prataculturae Sinica, 2023, 32(5): 106-117. |
[3] | Yu-ying CAO, Xue-meng SU, Zheng-chao ZHOU, Qun-wei ZHENG, Jia-hui YUE. Spatial differences in, and factors influencing, the shear strength of typical herb root-soil complexes in the Loess Plateau of China [J]. Acta Prataculturae Sinica, 2023, 32(5): 94-105. |
[4] | ZHANG Tong-rui, LI Fu-cui, LI Hui, JI Shuang-xuan, FAN Zhi-hao, CHEN Yu-feng, CHAO Yue-hui, HAN Lie-bao. Effect of carpet mesh implantation on hybrid turf stability and performance quality [J]. Acta Prataculturae Sinica, 2020, 29(8): 27-36. |
[5] | ZHOU Tao, CHEN Yun, WANG Run-ze, LI Tie, TANG Han, ZHAI Ting-ting, LIU Xiao-hong. Effect of planting grasses and adding polyacrylamide on the shear performance and erodibility-resistance of purple soil in barren hillsides [J]. Acta Prataculturae Sinica, 2019, 28(3): 62-73. |
[6] | LI Tie, WANG Run-ze, CHEN Yun, HE Bing-hui, ZHOU Tao, WU Chen, LIU Xiao-hong. Effects of polyacrylamide and grass root system on shear strength and physical properties of purple soil on barren slopes [J]. Acta Prataculturae Sinica, 2018, 27(2): 69-78. |
[7] | LIU Chang-Yi, HU Xia-Song, DOU Zeng-Ning, LI Xi-Lai, XU Zhi-Wen. Shear strength tests of the root-soil composite system of alpine grassland vegetation at different stages of degradation and the determination of thresholds in the Yellow River source region [J]. Acta Prataculturae Sinica, 2017, 26(9): 14-26. |
[8] | DING Wen-Bin, HE Wen-Jian, SHI Dong-Mei, JIANG Guang-Yi, JIANG Ping, CHANG Song-Guo. Effect of drying-wetting condition on attenuation-recovery of soil shear strength of bio-embankment on sloping farmland comprising purple soil [J]. Acta Prataculturae Sinica, 2017, 26(6): 56-67. |
[9] | WEI Shu-zhen, WANG Fei-feng, ZHANG Jiang-shan. A method for classification of natural grassland quality based on SOFM [J]. Acta Prataculturae Sinica, 2011, 20(1): 175-182. |
[10] | ZHANG Jin-tun, NIE Er-bao, XIANG Chun-ling. Classification and ordination of subalpine meadows in Wutai Mountains by artificial neural network methods [J]. Acta Prataculturae Sinica, 2009, 18(4): 35-40. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||