Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (7): 182-191.DOI: 10.11686/cyxb2023314
Mao-hua DENG(), Rong ZHENG(), Bei-chen WANG, Chao WANG, Rong-gui LIU, Han-wen ZHANG, Zheng-he WANG, Jian-feng WANG()
Received:
2023-09-01
Revised:
2023-11-03
Online:
2024-07-20
Published:
2024-04-08
Contact:
Jian-feng WANG
Mao-hua DENG, Rong ZHENG, Bei-chen WANG, Chao WANG, Rong-gui LIU, Han-wen ZHANG, Zheng-he WANG, Jian-feng WANG. Effects of the Epichloë gansuensis endophyte on the physiological status of Achnatherum inebrians under different nitrogen concentrations[J]. Acta Prataculturae Sinica, 2024, 33(7): 182-191.
处理 Treatments | df | 叶片干重 Dry weight of blades | 株高 Plant height | 分蘖数 Number of tillers | |||
---|---|---|---|---|---|---|---|
F | P | F | P | F | P | ||
N营养浓度Nitrogen nutrient concentration | 1 | 82.330 | <0.001 | 42.990 | <0.001 | 81.120 | <0.001 |
内生真菌Endophytic fungi | 1 | 0.140 | 0.712 | 33.750 | <0.001 | 14.820 | <0.001 |
氮营养浓度×内生真菌Nitrogen nutrient concentration×endophytic fungi | 1 | 1.187 | 0.289 | 1.743 | 0.202 | 5.400 | 0.022 |
Table 1 Two-way ANOVA analysis of E. gansuensis on dry weight, plant height and tillering number of leaves of A. inebrians under different N nutrient concentrations
处理 Treatments | df | 叶片干重 Dry weight of blades | 株高 Plant height | 分蘖数 Number of tillers | |||
---|---|---|---|---|---|---|---|
F | P | F | P | F | P | ||
N营养浓度Nitrogen nutrient concentration | 1 | 82.330 | <0.001 | 42.990 | <0.001 | 81.120 | <0.001 |
内生真菌Endophytic fungi | 1 | 0.140 | 0.712 | 33.750 | <0.001 | 14.820 | <0.001 |
氮营养浓度×内生真菌Nitrogen nutrient concentration×endophytic fungi | 1 | 1.187 | 0.289 | 1.743 | 0.202 | 5.400 | 0.022 |
处理 Treatments | df | 过氧化氢 H2O2 | 丙二醛 MDA | ||
---|---|---|---|---|---|
F | P | F | P | ||
N营养浓度Nitrogen nutrient concentration | 1 | 35.253 | <0.001 | 246.253 | <0.001 |
内生真菌Endophytic fungi | 1 | 10.313 | 0.012 | 8.246 | 0.021 |
氮营养浓度×内生真菌Nitrogen nutrient concentration×endophytic fungi | 1 | 6.966 | 0.030 | 18.619 | 0.003 |
Table 2 Two-way ANOVA analysis for the effects of E. gansuensis on malondialdehyde and hydrogen peroxide contents of A.inebrians under different nutrient concentrations
处理 Treatments | df | 过氧化氢 H2O2 | 丙二醛 MDA | ||
---|---|---|---|---|---|
F | P | F | P | ||
N营养浓度Nitrogen nutrient concentration | 1 | 35.253 | <0.001 | 246.253 | <0.001 |
内生真菌Endophytic fungi | 1 | 10.313 | 0.012 | 8.246 | 0.021 |
氮营养浓度×内生真菌Nitrogen nutrient concentration×endophytic fungi | 1 | 6.966 | 0.030 | 18.619 | 0.003 |
处理 Treatments | df | 还原性谷胱甘肽 GSH | 葡萄糖-6-磷酸脱氢酶 G6PDH | ||
---|---|---|---|---|---|
F | P | F | P | ||
N营养浓度Nitrogen nutrient concentration | 1 | 288.759 | <0.001 | 3.166 | 0.113 |
内生真菌Endophytic fungi | 1 | 29.737 | <0.001 | 6.080 | 0.039 |
氮营养浓度×内生真菌Nitrogen nutrient concentration×endophytic fungi | 1 | 33.597 | <0.001 | 9.358 | 0.016 |
Table 3 Two-way ANOVA analysis showing the influence of E. gansuensis on reduced glutathione content and glucose-6-phosphate dehydrogenase activity of A. inebrians under different nutrient concentrations
处理 Treatments | df | 还原性谷胱甘肽 GSH | 葡萄糖-6-磷酸脱氢酶 G6PDH | ||
---|---|---|---|---|---|
F | P | F | P | ||
N营养浓度Nitrogen nutrient concentration | 1 | 288.759 | <0.001 | 3.166 | 0.113 |
内生真菌Endophytic fungi | 1 | 29.737 | <0.001 | 6.080 | 0.039 |
氮营养浓度×内生真菌Nitrogen nutrient concentration×endophytic fungi | 1 | 33.597 | <0.001 | 9.358 | 0.016 |
处理 Treatments | df | 叶片碳含量Leaf C | 叶片氮含量Leaf N | 叶片磷含量Leaf P | |||
---|---|---|---|---|---|---|---|
F | P | F | P | F | P | ||
N营养浓度Nitrogen nutrient concentration | 1 | 0.593 | 0.463 | 269.887 | <0.001 | 20.274 | 0.002 |
内生真菌Endophytic fungi | 1 | 4.935 | 0.057 | 1.009 | 0.345 | 0.270 | 0.618 |
氮营养浓度×内生真菌Nitrogen nutrient concentration×endophytic fungi | 1 | 0.467 | 0.514 | 3.921 | 0.083 | 0.070 | 0.799 |
Table 4 Two-way ANOVA analysis for the effect of E. gansuensis on carbon, nitrogen and phosphorus contents of A. inebrians under different N nutrient concentrations
处理 Treatments | df | 叶片碳含量Leaf C | 叶片氮含量Leaf N | 叶片磷含量Leaf P | |||
---|---|---|---|---|---|---|---|
F | P | F | P | F | P | ||
N营养浓度Nitrogen nutrient concentration | 1 | 0.593 | 0.463 | 269.887 | <0.001 | 20.274 | 0.002 |
内生真菌Endophytic fungi | 1 | 4.935 | 0.057 | 1.009 | 0.345 | 0.270 | 0.618 |
氮营养浓度×内生真菌Nitrogen nutrient concentration×endophytic fungi | 1 | 0.467 | 0.514 | 3.921 | 0.083 | 0.070 | 0.799 |
内生真菌侵染状况 Status of endophytic fungal infestation (mmol·L-1 N) | C∶N | C∶P |
---|---|---|
0.01 E- | 0.88±0.14 | 46.25±2.80 |
0.01 E+ | 0.97±0.07 | 51.25±6.32 |
7.50 E- | 1.54±0.16 | 28.53±7.11 |
7.50 E+ | 1.57±0.00 | 28.44±3.68 |
Table 5 The changes of C∶N, C∶P in E+ and E- A. inebrians under 7.5 and 0.01 mmol·L-1 N
内生真菌侵染状况 Status of endophytic fungal infestation (mmol·L-1 N) | C∶N | C∶P |
---|---|---|
0.01 E- | 0.88±0.14 | 46.25±2.80 |
0.01 E+ | 0.97±0.07 | 51.25±6.32 |
7.50 E- | 1.54±0.16 | 28.53±7.11 |
7.50 E+ | 1.57±0.00 | 28.44±3.68 |
1 | Tian P, Zhang G M, Nan Z B. Advances in research on grass endophytes in agricultural systems and applications in forage breeding. Acta Prataculturae Sinica, 2016, 25(12): 206-220. |
田沛, 张光明, 南志标. 禾草内生真菌研究及应用进展. 草业学报, 2016, 25(12): 206-220. | |
2 | Kuldau G, Bacon C. Clavicipitaceous endophytes: Their ability to enhance resistance of grasses to multiple stresses. Biological Control, 2008, 46(1): 57-71. |
3 | Xia C, Christensen M J, Zhang X, et al. Effect of Epichloë gansuensis endophyte and transgenerational effects on the water use efficiency, nutrient and biomass accumulation of Achnatherum inebrians under soil water deficit. Plant and Soil, 2018, 424(1): 555-571. |
4 | Li F. Effects of endophyte infection on drought resistance to drunken horse grass (Achnatherum inebrians). Lanzhou: Lanzhou University, 2007. |
李飞. 内生真菌对醉马草抗旱性影响的研究. 兰州: 兰州大学, 2007. | |
5 | Wang J F, Hou W P, Christensen M J, et al. The fungal endophyte Epichloë gansuensis increases NaCl-tolerance in Achnatherum inebrians through enhancing the activity of plasma membrane H+-ATPase and glucose-6-phosphate dehydrogenase. Science China Life Sciences, 2021, 64(3): 452-465. |
6 | Sabzalian M, Mirlohi A, Sharifnabi B. Reaction to powdery mildew fungus, Blumeria graminis in endophyte-infected and endophyte-free tall and meadow fescues. Australasian Plant Pathology, 2012, 41(5): 565-572. |
7 | Wang J F, Tian P, Christensen M J, et al. Effect of Epichloë gansuensis endophyte on the activity of enzymes of nitrogen metabolism, nitrogen use efficiency and photosynthetic ability of Achnatherum inebrians under various NaCl concentrations. Plant and Soil, 2019, 435(1): 57-68. |
8 | Wang C, Huang R, Wang J F, et al. Comprehensive analysis of transcriptome and metabolome elucidates the molecular regulatory mechanism of salt resistance in roots of Achnatherum inebrians mediated by Epichloë gansuensis. Journal of Fungi, 2022, 8(10): 1092. |
9 | Ren A Z, Gao Y B, Zhang L, et al. Effects of cadmium on growth parameters of endophyte-infected endophyte-free ryegrass. Journal of Plant Nutrition and Soil Science, 2006, 169(6): 857-860. |
10 | Guo Y E, Li Y D, Gao P, et al. Effects of Claroideoglomus etunicatum and grass endophyte on the growth of Lolium perenne under different phosphorus levels. Acta Agrestia Sinica, 2018, 26(6): 1458-1466. |
郭艳娥, 李应德, 高萍, 等. 不同磷水平下幼套球囊霉与禾草内生真菌对多年生黑麦草生长的影响. 草地学报, 2018, 26(6): 1458-1466. | |
11 | Chen N. Genetic diversity of drunken horse grass (Achnatherum inebrians) and effects of its endophyte infection in cold tolerance. Lanzhou: Lanzhou University, 2008. |
陈娜. 醉马草遗传多样性及内生真菌对其抗寒性影响. 兰州: 兰州大学, 2008. | |
12 | Barker G M, Patchett B J, Cameron N E. Epichloë uncinata infection and loline content protect Festulolium grasses from crickets (Orthoptera: Gryllidae). Journal of Economic Entomology, 2015, 108(2): 789-797. |
13 | Hou W P, Wang J F. Research progress on the function of Epichloë endophyte of grass and its potential in plant breeding. Molecular Plant Breeding, 2022, 20(1): 320-333. |
侯文鹏, 王剑峰. 禾草Epichloë内生真菌功能的研究进展及在植物育种中的潜力. 分子植物育种, 2022, 20(1): 320-333. | |
14 | Li C J, Yao X, Nan Z B. Advances in research of Achnatherum inebrians-Epichloë endophyte symbionts. Chinese Journal of Plant Ecology, 2018, 42(8): 793-805. |
李春杰, 姚祥, 南志标. 醉马草内生真菌共生体研究进展. 植物生态学报, 2018, 42(8): 793-805. | |
15 | Wang J F, Nan Z B, Christensen M J, et al. Glucose-6-phosphate dehydrogenase plays a vital role in Achnatherum inebrians plants host to Epichloë gansuensis by improving growth under nitrogen deficiency. Plant and Soil, 2018, 430(4): 1-12. |
16 | Li X, Zhou Y, Mace W, et al. Endophyte species influence the biomass production of the native grass Achnatherum sibiricum (L.) Keng under high nitrogen availability. Ecology and Evolution, 2016, 6(23): 8595-8606. |
17 | Wang J F, Nan Z B, Christensen M J, et al. Effect of Epichloë gansuensis endophyte on the nitrogen metabolism, nitrogen use efficiency, and stoichiometry of Achnatherum inebrians under nitrogen limitation. Journal of Agricultural and Food Chemistry, 2018, 66(16): 4022-4031. |
18 | Chen Y K, Teng Z N, Yuan Y Q, et al. Excessive nitrogen in field-grown rice suppresses grain filling of inferior spikelets by reducing the accumulation of cytokinin and auxin. Field Crops Research, 2022, 283(5735): 108542. |
19 | Pan F, Wu W. Rapid detection methods of natural plant active components from endophytic fungi. Highlights of Sciencepaper Online, 2015, 8(19): 1984-1994. |
潘峰, 吴卫. 内生真菌植物活性成分快速检测方法. 中国科技论文在线精品论文, 2015, 8(19): 1984-1994. | |
20 | Hoagland D R, Arnon D. The water-culture method for growing plants without soil. California Agricultural Experiment Station Circular, 1950, 347(2): 1-32. |
21 | Liu Y Q, Wang H R, Jiang Z M, et al. Genomic basis of geographical adaptation to soil nitrogen in rice. Nature, 2021, 590(7847): 600-605. |
22 | Velikova V, Yordanov I, Edreva A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Science, 2000, 151(1): 59-66. |
23 | Anderson J V, Chevone B I, Hess J L. Seasonal variation in the antioxidant system of eastern white pine needles: Evidence for thermal dependence. Plant Physiology, 1992, 98(2): 501-508. |
24 | Song M L, Chai Q, Li X Z, et al. An asexual Epichloë endophyte modifies the nutrient stoichiometry of wild barley (Hordeum brevisubulatum) under salt stress. Plant and Soil, 2015, 387(1): 153-165. |
25 | Chandrajith R, Ranawana K, Priyantha A. Soil geochemical characteristics of Eucalyptus plantations and adjoining natural forest patches in central hilly districts of Sri Lanka. Journal of Geological Society of Sri Lanka, 2011, 14: 91-96. |
26 | Kekulandara D S, Sirisena D N, Bandaranayake P C G, et al. Variation in grain yield, and nitrogen, phosphorus and potassium nutrition of irrigated rice cultivars grown at fertile and low-fertile soils. Plant and Soil, 2019, 434(1): 107-123. |
27 | Zhi J J. An effect of different irrigation times and nitrogen forms on the flag leave senescence and the properties of starch accumulation in two gluten types of wheat cultivars. Luoyang: Henan University of Science and Technology, 2010. |
郅娟娟. 水分和氮素形态耦合对两种筋型小麦花后旗叶衰老及淀粉积累的影响. 洛阳: 河南科技大学, 2010. | |
28 | Wang L Q, Zhang B J, Tang N. Effects of nitrogen deficiency on the photosynthetic characteristics of wheat. Hubei Agricultural Sciences, 2014, 53(8): 1758-1761. |
王履清, 张边江, 唐宁. 氮素匮乏对小麦光合特性的影响. 湖北农业科学, 2014, 53(8): 1758-1761. | |
29 | Takeshita K, Olea-Azar C A, Mizuno M, et al. Singlet oxygen-dependent hydroxyl radical formation during uroporphyrin-mediated photosensitization in the presence of NADPH. Antioxidants & Redox Signaling, 2000, 2(2): 355-362. |
30 | Saed-Moucheshi A, Shekoofa A, Pessarakli M. Reactive oxygen species (ROS) generation and detoxifying in plants. Journal of Plant Nutrition, Taylor & Francis, 2014, 37(10): 1573-1585. |
31 | Kováčik J, Klejdus B, Bačkor M, et al. Phenylalanine ammonia-lyase activity and phenolic compounds accumulation in nitrogen-deficient Matricaria chamomilla leaf rosettes. Plant Science, 2007, 172(2): 393-399. |
32 | Kumagai E, Araki T, Ueno O. Effect of nitrogen-deficiency on midday photoinhibition in flag leaves of different rice (Oryza sativa L.) cultivars. Photosynthetica, 2009, 47(2): 241-246. |
33 | Noctor G, Mhamdi A, Chaouch S, et al. Glutathione in plants: An integrated overview: Glutathione status and functions. Plant, Cell & Environment, 2012, 35(2): 454-484. |
34 | Jin J, Wang J F, Li K K, et al. Integrated physiological, transcriptomic, and metabolomic analyses revealed molecular mechanism for salt resistance in soybean roots. International Journal of Molecular Sciences, 2021, 22(23): 12848. |
35 | Li J S. Studies on the mechanism of regulations of G6PDH, cGMP, H2O2 and Ca2+ in plant adapation to salt tolerance. Lanzhou: Lanzhou University, 2011. |
李积胜. G6PDH、cGMP、H2O2和Ca2+在植物耐盐适应中调节作用的机理研究. 兰州: 兰州大学, 2011. | |
36 | Wang K H, Zhu B, Zhu Z J. Review of the role of GSH/GSSG in plant abiotic stress response. Acta Horticultural Sinica, 2021, 48(4): 647-660. |
汪宽鸿, 祝彪, 朱祝军. GSH/GSSG在植物应对非生物胁迫中的作用综述. 园艺学报, 2021, 48(4): 647-660. | |
37 | Malinowski D P, Belesky D P. Adaptations of endophyte-infected cool-season grasses to environmental stresses: Mechanisms of drought and mineral stress tolerance. Crop Science, 2000, 40(4): 923-940. |
38 | Lewis G. Effects of biotic and abiotic stress on the growth of three genotypes of Lolium perenne with and without infection by the fungal endophyte Neotyphodium lolii. Annals of Applied Biology, 2005, 144(1): 53-63. |
39 | Ravel C, Courty C, Coudret A, et al. Beneficial effects of Neotyphodium lolii on the growth and water status in perennial ryegrass cultivated under nitrogen deficiency or drought stress. Agronomie, 1997, 17(3): 173-181. |
[1] | Dan HAN, Feng LONG, Sheng CHEN, Meng-fei HU, Dong WANG, Shui-hong CHEN. Cloning of TB1 from Hordeum bogdanii and the effect of endophytic fungi on its expression [J]. Acta Prataculturae Sinica, 2023, 32(8): 176-185. |
[2] | He-na LIAN, Chun-jie LI. Effects of different cultivation measures on the establishment and turf quality characteristics of Achnatherum inebrians lawn [J]. Acta Prataculturae Sinica, 2022, 31(6): 178-188. |
[3] | Ya-qi CHEN, Kai-qi SU, Tai-xiang CHEN, Chun-jie LI. Effects of complex saline-alkali stress on seed germination and seedling physiological characteristics of Achnatherum inebrians [J]. Acta Prataculturae Sinica, 2021, 30(3): 137-157. |
[4] | Ruo-chen ZHANG, Tao LI, Xiang YAO, Zhen-jiang CHEN, Chun-jie LI. A bibliometric analysis of research on the role of alkaloids produced by grass endophytic fungi based on the Web of Science database [J]. Acta Prataculturae Sinica, 2021, 30(10): 180-190. |
[5] | JIN Yuan-yuan, BOWATTE Saman, JIA Qian-min, HOU Fu-jiang, LI Chun-jie. Effects of Epichloё endophytic fungi infection in wild barley (Hordeum brevisubulatum) on soil chemical properties and the soil microbial community [J]. Acta Prataculturae Sinica, 2019, 28(10): 66-77. |
[6] | HUANG Xi, LI Chun-jie, NAN Zhi-biao. Competitive effects between Medicago sativa and Achnatherum inebrians [J]. Acta Prataculturae Sinica, 2012, 21(1): 59-65. |
[7] | PENG Qing-qing, LI Chun-jie, SONG Mei-ling, LIANG Ying, NAN Zhi-biao . Effects of Neotyphodium endophytes on seed germination of three grass species under different pH conditions [J]. Acta Prataculturae Sinica, 2011, 20(5): 72-78. |
[8] | DAI Le-ying, HUANG Xi, LI Chun-jie, NAN Zhi-biao. Spatial variation of ergot alkaloids in drunken horse grass infected by Neotyphodium gansuense [J]. Acta Prataculturae Sinica, 2010, 19(6): 215-221. |
[9] | HUANG Xi, LI Chun-jie, NAN Zhi-biao, YANG Song, CHAI Qing. Effects of Achnatherum inebrians infected with Neotyphodium endophyte on accompanying species of Stipa capillata and Poa sphondylodes [J]. Acta Prataculturae Sinica, 2010, 19(5): 87-93. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||