Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (8): 190-198.DOI: 10.11686/cyxb2023367
Yan-xia PAN1(), Hao XU2, Ya-feng ZHANG1, Hong-xia ZHANG1
Received:
2023-09-27
Revised:
2023-10-23
Online:
2024-08-20
Published:
2024-05-13
Contact:
Yan-xia PAN
Yan-xia PAN, Hao XU, Ya-feng ZHANG, Hong-xia ZHANG. Research progress on the hydraulic structure characteristics of xerophytes[J]. Acta Prataculturae Sinica, 2024, 33(8): 190-198.
1 | Pittermann J, Stuartb S A, Dawsonb T E, et al. Cenozoic climate change shape the evolutionary ecophysiology of the Cupressaceae conifers. PNAS, 2012, 109(24): 9647-9652. |
2 | Liu G H, Fu B J. Effects of global climate change on forest ecosystems. Journal of Natural Resources, 2001, 16(1): 71-78. |
刘国华, 傅伯杰. 全球气候变化对森林生态系统的影响. 自然资源学报, 2001, 16(1): 71-78. | |
3 | Zhang Y, Kong Z C, Yan S, et al. Palaeo-biodiversity at the northern piedmont of Tianshan mountains in Xinjiang during the Middle to Late Holocene. Chinese Journal of Plant Ecology, 2005, 29(5): 836-844. |
张芸, 孔昭宸, 阎顺, 等. 新疆天山北坡地区中晚全新世生物多样性特化. 植物生态学报, 2005, 29(5): 836-844. | |
4 | Fang J Y, Lechowicz M J. Climatic limits for the present distribution of beech (Fagus L.) species in the world. Journal of Biogeography, 2006, 33(10): 1804-1819. |
5 | Meng T T, Ni J, Wang G H. Plant functional traits, environments and ecosystem functioning. Chinese Journal of Plant Ecology, 2007, 31(1): 150-165. |
孟婷婷, 倪健, 王国宏. 植物功能性状与环境和生态系统功能. 植物生态学报, 2007, 31(1): 150-165. | |
6 | Zou H, Gao G Y, Fu B J. The relationship between grassland ecosystem and soil water in arid and semiarid areas: A review. Acta Ecologica Sinica, 2016, 36(11): 3127-3136. |
邹慧, 高光耀, 傅伯杰. 干旱半干旱草地生态系统与土壤水分关系研究进展. 生态学报, 2016, 36(11): 3127-3136. | |
7 | Li J Y, Zhai H B. Hydraulic architecture and drought resistance of woody plants. Chinese Journal of Applied Ecology, 2000, 11(2): 301-305. |
李吉跃, 翟红波. 木本植物水力结构与抗旱性. 应用生态学报, 2000, 11(2): 301-305. | |
8 | Souza R P, Machado E C, Silva J A B, et al. Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environmental and Experimental Botany, 2004, 51(1): 45-56. |
9 | Gallé A, Haldimann P, Feller U. Photosynthetic performance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery. New Phytologist, 2007, 174(4): 799-810. |
10 | Maseda P H, Fernández R J. Stay wet or else: three ways in which plants can adjust hydraulically to their environment. Journal of Experimental Botany, 2006, 57(15): 3963-3977. |
11 | Pittermann J. The evolution of water transport in plants: an integrated approach. Geobiology, 2010, 8: 112-139. |
12 | Anderegg W R L, Klein T, Bartlett M, et al. Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. PNAS, 2016, 113(18): 5024-5029. |
13 | Liu S B, Slik J W F, Zhang J L, et al. Spatial patterns of wood traits in China are controlled by phylogeny and the environment. Global Ecology and Biogeography, 2011, 20(2): 241-250. |
14 | Fu P L, Jiang Y J, Wang A Y, et al. Stem hydraulic traits and leaf water-stress tolerance are coordinated with the leaf phenology of angiosperm trees in an Asian tropical dry karst forest. Annals Botany, 2012, 10(1): 189-199. |
15 | Zhang S B, Wen G J, Qu Y Y, et al. Trade-offs between xylem hydraulic efficiency and mechanical strength in Chinese evergreen and deciduous savanna species. Tree Physiology, 2022, 42(7): 1337-1349. |
16 | Johnson D M, Jean-Christophe D, Woodruff D R, et al. Contrasting hydraulic strategies in two tropical lianas and their host trees. American Journal of Botany, 2013, 100(2): 374-383. |
17 | Zhu S D, Liu H, Xu Q Y, et al. Are leaves more vulnerable to cavitation than branches? Functional Ecology, 2016, 30(11): 1740-1744. |
18 | Sartori K, Vasseur F, Violle C, et al. Leaf economics and slow-fast adaptation across the geographic range of Arabidopsis thaliana. Scientific Reports, 2019, 9(1): 10758. |
19 | Song H, Yu H Y, Chen Y T, et al. Leaf economics spectrum among different plant functional types in Beijing Botanical Garden, China. Chinese Journal of Applied Ecology, 2016, 27(6): 1861-1869. |
宋贺, 于鸿莹, 陈莹婷, 等. 北京植物园不同功能型植物叶经济谱. 应用生态学报, 2016, 27(6): 1861-1869. | |
20 | Xiong D L, Flexas J. Leaf economics spectrum in rice: leaf anatomical, biochemical and physiological trait trade-offs. Journal of Experimental Botany, 2018, 69(22): 5599-5609. |
21 | Hayes F J, Buchanan S W, Brent C, et al. Intraspecific variation in soy across the leaf economics spectrum. Annals of Botany, 2019, 123(1): 107-120. |
22 | Kramer-Walter K R, Bellingham P J, Millar T R, et al. Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum. Journal of Ecology, 2016, 104(5): 1299-1310. |
23 | Laughli D C, Lusk C H, Bellingham P J, et al. Intraspecific trait variation can weaken interspecific trait correlations when assessing the whole-plant economic spectrum. Ecology and Evolution, 2017, 7: 8936-8949. |
24 | Siefert A, Ravenscroft C, Weiser M D, et al. Functional beta-diversity patterns reveal deterministic community assembly processes in eastern north American trees. Global Ecology Biogeography, 2013, 22(6): 682-691. |
25 | Suter M, Edwards P J. Convergent succession of plant communities is linked to species’ functional traits. Perspectives in Plant Ecology Evolution and Systematics, 2013, 15(4): 217-225. |
26 | Zhu J Y, Yu Q, Liu Y P, et al. Response of plant functional traits and leaf economics spectrum to urban thermal environment. Journal of Beijing Forestry University, 2018, 40(9): 72-81. |
朱济友, 于强, 刘亚培, 等. 植物功能性状及其叶经济谱对城市热环境的响应. 北京林业大学学报, 2018, 40(9): 72-81. | |
27 | Zhu J Y, Xu C Y, Qin G M, et al. Responses of leaf functional characters of three typical greening plants to air pollution and leaf economic spectrum analysis: A Beijing city as the study case. Journal of Central South University of Forestry & Technology, 2019, 39(3): 91-98. |
朱济友, 徐程扬, 覃国铭, 等. 3种典型绿化植物叶功能性状对大气污染的响应及其叶经济谱分析——以北京市为例. 中南林业科技大学学报, 2019, 39(3): 91-98. | |
28 | Chen Y T, Xu Z Z. Review on research of leaf economics spectrum. Chinese Journal of Plant Ecology, 2014, 38(10): 1135-1153. |
陈莹婷, 许振柱. 植物叶经济谱的研究进展. 植物生态学报, 2014, 38(10): 1135-1153. | |
29 | Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum. Nature, 2004, 428: 821-827. |
30 | Reich P B. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. Journal of Ecology, 2014, 102(2): 275-301. |
31 | Sack L, Scoffoni C. Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytologist, 2013, 198(4): 983-1000. |
32 | Zwieniecki M A, Boyce C K. Evolution of a unique anatomical precision in angiosperm leaf venation lifts constraints on vascular plant ecology. Proceedings of the Royal Society B: Biological Sciences, 2014, 281: 2013-2829. |
33 | Jin Y, Wang C K. Trade-offs between plant leaf hydraulic and economic traits. Chinese Journal of Plant Ecology, 2015, 39(10): 1021-1032. |
金鹰, 王传宽. 植物叶片水力与经济性状权衡关系的研究进展. 植物生态学报, 2015, 39(10): 1021-1032. | |
34 | Scoffoni C, Albuquerque C, Brodersen C R, et al. Leaf vein xylem conduit diameter influences susceptibility to embolism and hydraulic decline. New Phytologist, 2016, 213(3): 1076. |
35 | Males J, Griffiths H. Economic and hydraulic divergences underpin ecological differentiation in the Bromeliaceae. Plant, Cell and Environment, 2018, 41(1): 64-78. |
36 | Li X M, Blackman C J, Choat B, et al. Tree hydraulic traits are coordinated and strongly linked to climate-of-origin across a rainfall gradient. Plant, Cell and Environment, 2018, 41(3): 646-660. |
37 | Yin Q, Wang L, Lei M L, et al. The relationships between leaf economics and hydraulic traits of woody plants depend on water availability. Science of the Total Environment, 2018, 621(15): 245-252. |
38 | Brodribb T J, Feild T S. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecology Letters, 2010, 13(2): 175-183. |
39 | Brodribb T J, Feild T S, Jordan G J. Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiology, 2007, 144(4): 1890-1898. |
40 | Liu H, Xu Q, He P, et al. Strong phylogenetic signals and phylogenetic niche conservatism in ecophysiological traits across divergent lineages of Magnoliaceae. Scientific Reports, 2015, 5: 12246. |
41 | Li L, Luke McCormack M, Ma C G, et al. Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests. Ecology Letters, 2015, 18: 899-906. |
42 | Maréchaux I, Bartlett M K, Sack L, et al. Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest. Functional Ecology, 2015, 29(10): 1268-1277. |
43 | Yuan Z W, Sun X M. The research summary of identification index of drought resistance and its evaluation method. Gansu Agricultural Science and Technology, 2012, 11: 36-39. |
袁志伟, 孙小妹. 作物抗旱性鉴定指标及评价方法研究进展. 甘肃农业科技, 2012, 11: 36-39. | |
44 | Baltzer J L, Thomas S C, Henrik B H. A second dimension to the leaf economics spectrum predicts edaphic habitat association in a tropical forest. PLoS One, 2010, 5(10): e13163. |
45 | Reich P B, Tilman D, Isbell F, et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science, 2012, 336(6081): 589-592. |
46 | Leishman M R, Thomson V P, Cooke J. Native and exotic invasive plants have fundamental similar carbon capture strategies. Journal of Ecology, 2010, 98(1): 28-42. |
47 | Fortunel C, Fine P V A, Baraloto C. Leaf, stem and root tissue strategies across 758 Neotropical tree species. Functional Ecology, 2012, 26(5): 1153-1161. |
48 | Li X R, Zhang Z S, Huang L, et al. Review of the ecohydrological processes and feedback mechanisms controlling sand-binding vegetation systems in sandy desert regions of China. Chinese Science Bulletin, 2013, 58(13): 1483-1496. |
李新荣, 张志山, 黄磊, 等. 我国沙区人工植被系统生态-水文过程和互馈机理研究评述. 科学通报, 2013, 58(13): 1483-1496. | |
49 | Jian J, Jia D B, Guo S F, et al. Water sources in growing season of Salix gordejevii in the Otindag sandy land traced by stable isotope in 2014. Arid Zone Research, 2017, 34(2): 350-355. |
菅晶, 贾德彬, 郭少峰, 等. 2014年浑善达克沙地黄柳生长季水分来源同位素示踪研究. 干旱区研究, 2017, 34(2): 350-355. | |
50 | Su H, Li Y, Liu W, et al. Changes in water use with growth in Ulmus pumila in semiarid sandy land of northern China. Trees, 2014, 28: 41-52. |
51 | Dai Y, Zheng X J, Tang L S, et al. Stable oxygen isotopes reveal distinct water use patterns of two Haloxylon species in the Gurbantonggut Desert. Plant and Soil, 2015, 389: 73-87. |
52 | Yang G M, Wang A, Wang L. Water source and water use efficiency of two typical shrubs in different seasons in Liudaogou watershed. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(1): 140-149. |
杨国敏, 王爱, 王力. 六道沟流域2种典型灌木不同季节水分来源及利用效率. 西北植物学报, 2018, 38(1): 140-149. | |
53 | Gong X W, Guo J J, Jiang D M, et al. Contrasts in xylem hydraulics and water use underlie the sorting of different sand-fixing shrub species to early and late stages of dune stabilization. Forest Ecology and Management, 2020, 457: 117705. |
54 | Moreno-Gutiérrez C, Dawson T E, Nicolás E, et al. Isotopes reveal contrasting water use strategies among coexisting plant species in a Mediterranean ecosystem. New Phytologist, 2012, 196: 489-496. |
55 | Wang Y N, Xiong W, Wang Y H, et al. A review on leaf water use efficiency of major trees species in arid and semi-arid area. World Forestry Research, 2012, 25(2): 17-23. |
王云霓, 熊伟, 王彦辉, 等. 干旱半干旱地区主要树种叶片水分利用效率研究综述. 世界林业研究, 2012, 25(2): 17-23. | |
56 | Choat B, Brodribb T J, Brodersen C R, et al. Triggers of tree mortality under drought. Nature, 2018, 558: 531-539. |
57 | Li B, Wang Y, Hill R L, et al. Effects of apple orchards converted from farmlands on soil water balance in the deep loess deposits based on HYDRUS-1D model. Agriculture, Ecosystems and Environment, 2019, 285: 106645. |
58 | Huang M B, Gallichand J. Use of the SHAW model to assess soil water recovery after apple trees in the gully region of the Loess Plateau, China. Agricultural Water Management, 2006, 85: 67-76. |
59 | Li X F, Li J, Wang X C, et al. Simulation of water productivity and soil desication of Caragana microphylla shrub land on semi-arid hilly region of the loess plateau. Agricultural Research in the Arid Areas, 2007, 25(3): 113-119. |
李小芳, 李军, 王学春, 等. 半干旱黄土丘陵区柠条林水分生产力和土壤干燥化效应模拟研究. 干旱地区农业研究, 2007, 25(3): 113-119. | |
60 | Li J, Wang X C, Shao M A, et al. Simulation of water productivity and soil desiccation effects of different planting density black locust forestlands on the Loess Plateau. Acta Ecologica Sinica, 2008, 28(7): 3125-3142. |
李军, 王学春, 邵明安, 等. 黄土高原不同密度刺槐 (Robinia pseudoacia) 林地水分生产力与土壤干燥化效应模拟. 生态学报, 2008, 28(7): 3125-3142. | |
61 | Li J, Wang X C, Shao M A, et al. Simulation of water-limiting biomass productivity of Chinese pine plantations and the soil desiccation effect in 3 sites with different annual precipitation on Loess Plateau. Scientia Silvae Sinicae, 2010, 46(11): 25-35. |
李军, 王学春, 邵明安, 等. 黄土高原3个不同降水量地点油松林地水分生产力与土壤干燥化效应模拟. 林业科学, 2010, 46(11): 25-35. | |
62 | McDowell N G, Fisher R A, Xu C, et al. Evaluating theories of drought-induced vegetation mortality using a multimodel-experiment framework. New Phytologist, 2013, 200: 304-321. |
63 | Gharsallah O, Facchi A, Gandolfi C. Comparison of six evapotranspiration models for a surface irrigated maize agro-ecosystem in Northern Italy. Agricultural Water Management, 2013, 130: 119-130. |
64 | Sperry J S, Wang Y J, Wolfe B T, et al. Pragmatic hydraulic theory predicts stomatal responses to climatic water deficits. New Phytologist, 2016, 212: 577-589. |
65 | Mackay D S, Ewers B E, Loranty M M, et al. Bayesian analysis of canopy transpiration models: A test of posterior parameter means against measurements. Journal of Hydrology, 2012, 432: 75-83. |
66 | Tai X N, Mackay D S, Sperry J S, et al. Distributed plant hydraulic and hydrological modeling to understand the susceptibility of riparian woodland trees to drought-induced mortality. Water Resources Research, 2018, 54: 4901-4915. |
67 | Lawlor D W. Genetic engineering to improve plant performance under drought: physiological evaluation of achievements, limitations, and possibilities. Journal of Experimental Botany, 2013, 64(1): 83-108. |
68 | Gong J R, Zhang L X, Zhao A F, et al. Elementary studies on physiological and bio-chemical anti-drought features of Artemisia ordosica. Journal of Desert Research, 2002, 22(4): 387-392. |
龚吉蕊, 张立新, 赵爱芬, 等. 油蒿(Artemisia ordosica)抗旱生理生化特性研究初报. 中国沙漠, 2002, 22(4): 387-392. | |
69 | Yu L F, Zhu S Q, Ye J Z. Preliminary study on the adaptability of tolerate-drought for different species group in Karst forest. Journal of Nanjing Forestry University (Natural Sciences Edition), 2002, 26(1): 19-22. |
俞理飞, 朱守谦, 叶镜中. 喀斯特森林不同种组的耐旱适应性. 南京林业大学学报(自然科学版), 2002, 26(1): 19-22. | |
70 | Zhang D Y, Yin L K, Pan B R. Study on drought-resisting mechanism of Tamrix L. and assessing of its potential application. Journal of Desert Research, 2003, 23(3): 252-256. |
张道远, 尹林克, 潘伯荣. 柽柳属植物抗旱性能研究及其应用潜力评价. 中国沙漠, 2003, 23(3): 252-256. | |
71 | Li J Y. Mechanisms of drought tolerance in plants. Journal of Beijing Forestry University, 1991, 13(3): 92-100. |
李吉跃. 植物耐旱性及其机理. 北京林业大学学报, 1991, 13(3): 92-100. | |
72 | Wei Y S, Liang Z S, Shan L, et al. Comprehensive evaluation on alfalfa drought-resistance traits by subordinate function values analysis. Pratacultural Science, 2005, 22(6): 33-36. |
魏永胜, 梁宗锁, 山仑, 等. 利用隶属函数值法评价苜蓿抗旱性. 草业科学, 2005, 22(6): 33-36. | |
73 | Wang D, Zhang L Q, Xue J H. The study on comprehensive evaluation of seedlings’ drought resistance-example of 6 forestation seedlings in Karst mountainous region. Chinese Agricultural Science Bulletin, 2011, 27(25): 5-12. |
王丁, 张丽琴, 薛建辉. 苗木抗旱性综合评价研究——以6种喀斯特造林树种苗木为例. 中国农学通报, 2011, 27(25): 5-12. | |
74 | Feng X Y, Yu Z Y, Zhong P F. Evaluation of seeding drought resistance of five species in the genus Picea Linn. from different provenance. Journal of Gansu Agricultural University, 2012, 47(1): 95-102. |
冯祥元, 于柱英, 种培芳. 不同种源地云杉的苗期抗旱性评价. 甘肃农业大学学报, 2012, 47(1): 95-102. |
[1] | Ming NAN, Xing-rong WANG, Jing LI, Yan-ming LIU, Cheng-jun ZHANG, Ji-kuan CHAI, Gui-qin ZHAO. Differences in traits related to lodging resistance among oat genotypes [J]. Acta Prataculturae Sinica, 2023, 32(11): 106-118. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||