[1] 刘金波, 许艳丽. 我国连作大豆土壤微生物研究现状[J]. 中国油料作物学报, 2008, 30(1): 132-136. [2] 王旭, 曾昭海, 朱波, 等. 燕麦与箭筈豌豆不同混作模式对根际土壤微生物数量的影响[J]. 草业学报, 2009, 18(6): 151-157. [3] 赵有翼, 蔡立群, 王静, 等. 不同保护性耕作措施对三种土壤微生物氮素类群数量及其分布的影响[J]. 草业学报, 2009, 18(4): 125-130. [4] 荣丽, 李贤伟, 朱天辉, 等. 光皮桦细根与扁穗牛鞭草草根分解的土壤微生物数量及优势类群[J]. 草业学报, 2009, 18(4): 117-124. [5] 庞欣, 张福锁, 王敬国. 不同供氮水平对根际微生物量氮及微生物活度的影响[J]. 植物营养与肥料学报, 2000, 6(4): 476-480. [6] 张成霞, 南志标. 放牧对草地土壤微生物影响的研究述评[J]. 草业科学, 2010, 27(1): 65-70. [7] 任欣正. 植物病原细菌的分类和鉴定[M]. 北京:农业出版牡, 1994:1-240. [8] 贾云鹤, 张俊华, 崔崇士. 软腐欧文氏菌致病性的研究进展[J]. 东北农业大学学报, 2007, 38(1):113-118. [9] Perombelon M C, Kelman A. Ecology of the soft rot Erwinia[J]. Annual Review of Phytopathology, 1980, 18:361-387. [10] Andro T, Chambost J P, Kotoujansky A, et al. Mutants of Erwinia chrysanthemi defective in secretion of pectinase and cellulose[J]. The Journal of Bacteriology, 1984, 160(3):1199-1203. [11] Collmer A, Keen N T. The role of pectic enzymes in plant pathogenesis[J]. Annual Review of Phytopathology, 1986, 24:383-409. [12] Toth I K, Avrova A O, Hyman L J. Rapid identification and differentiation of the soft rot erwinias by 16S-23S intergenic transcribed spacer-PCR and restriction fragment length polymorphism analyses[J]. Applied and Environmental Microbiology, 2001, 67(9): 4070-4076. [13] William G, Weisburg, Susan M, et al. 16S ribosomal DNA amplification for phylogenetic study[J]. The Journal of Bacteriology, 1991, 173(2): 697-703. [14] Kwon S W, Go S J, Kang H W, et al. Phylogenetic analysis of Erwinia species based on 16S rRNA gene sequences[J]. International Journal Systematic Bacteriology, 1997, 47(4):1061-1067. [15] Hauben L, Moore E R, Vauterin L, et al. Phylogenetic position of phytopathogens within the Enterobacteriaceae[J]. Systematic and Applied Microbiology, 1998, 21(3):384-397. [16] 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京:科学出版牡, 2001: 366-367. [17] 许飞, 戴欣, 陈月琴. 南沙海区沉积物中细菌和古细菌16S rDNA多样性的研究[J]. 海洋与湖沼, 2004, 35(1): 89-94. [18] 李金花. 马铃薯贮藏期细菌性腐烂病和镰刀菌干腐病病原学研究[D]. 兰州:甘肃农业大学, 2007. [19] Burr T J, Schroth M N. Occurrence of soft-rot Erwinia spp. in soil and plant material[J]. Phytopathology, 1977, 67: 1382-1387. [20] Togashi J, Kuroda H, Namai T. Detection of soft rot Erwinia in apparently healthy tissues of vegetables left in fields[J]. Annals of the Phytopathological Society of Japan, 1995, 61(2):141-143. [21] Togashi J, Ueda K, Namai T, Overwintering of Erwinia carotovora subsp. carotovora in diseased tissues in soil and its role as inoculum for soft rot of Chinese cabbage (Brassica campestris, Pekinensis Group)[J]. Journal of General Plant Pathology, 2001, 67(1): 45-50. [22] Acea M J, Moore C R, Alexander M. Survival and growth of bacteria introduced into soil[J]. Soil Biology and Biochemistry, 1988, 20(4): 509-515. [23] Kikumoto T. Ecological aspects of the soft rot bacteria[J]. Journal Reports of the Institute for Agricultural Research, Tohoku University, 1980, 31:19-41. [24] Togashi J. Studies on the outbreak of the soft rot of Chinese cabbages by Erwinia aroideae (Towns.)[J]. Journal Reports of the Institute for Agricultural Research, Tohoku University, 1972, 23: 17-52. [25] Granada G A, Sequeira L. Survival of Pseudomonas solanacearum in soil rhizosphere and plant roots[J]. Canadian Journal Microbiology, 1983, 29(4): 433-440. [26] Jackson M T, Gonzalez L C. Persistence of Pseudomonas solanacearum (race 1) in a naturally infested soil in Costa Rica[J]. Phytopathology, 1981, 71: 690-693. |