[1] Liu Q, Zhang G Y, Chen S Y. Structure and regulatory function of plant transcription factors[J]. Chinese Science Bulletin, 2001, 46(4): 271-278. [2] Jack K, Okamur O, Caster B, et al. The AP2 domain of APETALA2 defines a large new family of DNA binding protein in Arabidopsis[J]. Proceedings of the National Academy of Sciences, USA, 1997, 94(6): 7076-7081. [3] Nakano T, Suzuki K, Fujimura T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiology, 2006, 140(2): 411-432. [4] Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress[J]. The Plant Cell, 1994, 6(2): 251-264. [5] 王舟, 刘建秀. DREB/CBF类转录因子研究进展及其在草坪草和牧草抗逆基因工程中的应用[J].草业学报, 2011, 20(1): 222-236. [6] 刘晓静, 郝凤, 张德罡, 等. 抗冻基因CBF2表达载体构建及转化紫花苜蓿的研究[J].草业学报, 2011, 20(2): 193-200. [7] Hao D Y, Ohme-Takagi M, Sarai A. Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant[J]. The Journal of Biological Chemistry, 1998, 273(41): 26857-26861. [8] 杨红善, 常根柱, 周学辉, 等. 美国引进苜蓿品种半湿润区栽培试验[J]. 草业学报, 2010, 19(1): 121-127. [9] 张改娜, 贾敬芬. 豌豆清蛋白1(PAl)基因的克隆及对苜蓿的转化[J]. 草业学报, 2009, 18(3): 117-125. [10] Bleecker A B, Kende H. ETHYLENE: A gaseous signal molecule in plants[J]. Annual Review of Cell and Developmental Biology, 2000, 16: 1-18. [11] Chang C. The ethylene signal transduction pathway in Arabidopsis: an emerging paradigm[J]. Trends in Biochemistry Science, 1996, 21(4): 129-133. [12] Ecker J. The ethylene signal transduction pathway in plants[J]. Science, 1995, 268: 667-675. [13] 江腾, 林勇祥, 刘雪, 等. 苜蓿全基因组WRKY转录因子基因的分析[J]. 草业学报, 2011, 20(3): 211-218. [14] Menke F L H, Champion A, Kijne J W, et al. A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate- and elicitor-inducible AP2-domain transcription factor, ORCA2[J]. The EMBO Journal, 1999, 18: 4455-4463. [15] Van der Fits L, Memelink J. The jasmonate-inducible AP2/ERF-domain transcription factor ORCA3 activates gene expression via interaction with a jasmonate-responsive promoter element[J]. The Plant Journal, 2001, 25(1): 43-53. [16] Zhang G Y, Chen M, Li L C, et al. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco[J]. Journal of Experimental Botany, 2009, 60(13): 3781-3796. [17] Mauch-Mani B, Mauch F. The role of abscisic acid in plant-pathogen interactions[J]. Current Opinion in Plant Biology, 2005, 8(4): 409-414. [18] Thara V K, Tang X Y, Gu Y Q, et al. Pseudomonas syringae pv tomato induces the expression of tomato EREBP-like genes Pti4 and Pti5 independent of ethylene, salicylate and jasmonate[J]. The Plant Journal, 1999, 20(4): 475-483. [19] Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis[J]. The Plant cell, 1998, 10: 1391-1406. [20] Seo Y J, Park J B, Cho Y J, et al. Overexpression of the ethylene-responsive factor gene BrERF4 from brassica rapa increases tolerance to salt and drought in Arabidopsis Plants[J]. Molecules and Cells, 2010, 30: 271-277. [21] Zhang H W, Liu W, Wan L Y, et al. Functional analyses of ethylene response factor JERF3 with the aim of improving tolerance to drought and osmotic stress in transgenic rice[J]. Transgenic Research, 2010, 19: 809-818. [22] Zhang Z J, Li F, Li D J, et al. Expression of ethylene response factor JERF1 in rice improves tolerance to drought[J]. Planta, 2010, 232: 765-774. |