[1] 蔡建一, 马清, 周向睿, 等. Na+在霸王适应渗透胁迫中的生理作用[J]. 草业学报, 2011, 20(1): 89-95. [2] Cornic G. Drought stress inhibits photosynthesis by decreasing stomatal aperture-not by affecting ATP synthesis[J]. Trends in Plant Science, 2000, 5: 187-188. [3] Dodd I C, Critchley C, Woodall G S, et al. Photo inhibition in differently colored juvenile leaves of Syzygium species[J]. Journal of Experimental Botany, 1998, 49: 1437-1445. [4] Morales F, Abadiá A, Abadiá J. Photoinhibition and photoprotection under nutrient deficiencies, drought and salinity[A]. Advances in Photosynthesis and Respiration: Photoprotection, Photoinhibition, Gene Regulation, and Environment[M]. Netherlands: Springer Press, 2006: 65-85. [5] Gonzalez-Rodriguez A M, Martin-Olivera A, Morales D, et al. Physiological responses of tagasaste to a progressive drought in its native environment on the Canary Islands[J]. Environmental and Experimental Botany, 2005, 53: 195-204. [6] Besson-Bard A, Pugin A, Wendehenne D. New insights into nitric oxide signaling in plants[J]. Annual Review of Plant Biology, 2008, 59: 21-39. [7] Mata C G, Lamattina L. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress[J]. Plant Physiology, 2001, 126: 1196-1204. [8] 相昆, 李宪利, 王晓芳, 等. 水分胁迫下外源NO对核桃叶绿素荧光的影响[J]. 果树学报, 2006, 23(4): 616-619. [9] 樊怀福, 郭世荣, 焦彦生, 等. 外源一氧化氮对NaCl胁迫下黄瓜幼苗生长、活性氧代谢和光合特性的影响[J]. 生态学报, 2007, 27(2): 546-553. [10] 吴雪霞, 朱为民, 朱月林, 等. 外源一氧化氮对NaCl胁迫下番茄幼苗光合特性的影响[J]. 植物营养与肥料学报, 2007, 13(6): 1105-1109. [11] 敬岩, 孙宝腾, 符建荣. 一氧化氮改善铁胁迫玉米光合组织结构及其活性[J]. 植物营养与肥料学报, 2007, 13(5): 809-815. [12] 汤绍虎, 周启贵, 孙敏, 等. 外源NO对渗透胁迫下黄瓜种子萌发、幼苗生长和生理特性的影响[J]. 中国农业科学, 2007, 40(2): 419-425. [13] 张华, 孙永刚, 张帆, 等. 外源一氧化氮供体对渗透胁迫下小麦种子萌发和水解酶活性的影响[J]. 植物生理与分子生物学学报, 2005, 31(3): 241-246. [14] 高景慧, 席雪丽, 刘记, 等. 外源NO对渗透胁迫下红三叶幼苗生长抑制及氧化损伤的缓解效应[J]. 种子, 2009, 28(8): 24-28. [15] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000: 134-137. [16] 苏秀荣, 王秀峰, 杨凤娟, 等. 硝酸根胁迫对黄瓜幼苗叶片光合速率, PSⅡ光化学效率及光能分配的影响[J]. 应用生态学报, 2007, 18(7): 1441-1446. [17] Ono K, Nishi Y, Watannabe A, et al. Possible mechanisms of adaptive leaf senescence[J]. Plant Biology, 2001, 3: 234-243. [18] Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology, 1982, 33: 317-345. [19] Carrasco R M, Rodriguez J S, Perez P. Changes in chlorophyll fluorescence during the course of photoperiod and in response to drought in Casuarina equisetifolia Forst. and Forst[J]. Photosynthetica, 2002, 40(3): 363-368. [20] Foyer C H, Lopez-Delgado H, Dat J F, et al. Hydrogen peroxide-and glutathione-associated mechanisms of acclimatory stress tolerance and signalling[J]. Physiologia Plantarum, 1997, 100: 241-254. [21] 魏玉霞, 董川. 磷光分析法在生命科学中的应用新进展[J]. 生命的化学, 2003, 23(4): 320-322. [22] 高奔, 宋杰, 刘金萍, 等. 盐胁迫对不同生境盐地碱蓬光合及离子积累的影响[J]. 植物生态学报, 2010, 34(6): 671-677. [23] 黄增荣,隆小华,刘兆普,等. KNO3对NaCl胁迫下两菊芋品种幼苗生长及光合能力的影响[J]. 草业学报, 2011, 20(1): 82-88. [24] Delledonne M, Xai Y J, Dixon R A, et al. Nitric oxide functions as a signal in plant disease resistance[J]. Nature, 1998, 394: 585-588. [25] 邵瑞鑫, 上官周平. 外源一氧化氮供体SNP对受旱小麦光合色素含量和PSⅡ光能利用能力的影响[J]. 作物学报, 2008, 34(5): 818-822. [26] 陈良,隆小华,郑晓涛,等. 镉胁迫下两种菊芋幼苗的光合作用特征及镉吸收转运差异的研究[J]. 草业学报, 2011, 20(6): 60-67. [27] 张仁和, 薛吉全, 浦军, 等. 干旱胁迫对玉米苗期植株生长和光合特性的影响[J]. 作物学报, 2011, 37(3): 521-528. [28] Santos C V. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves[J]. Scientia Horticulturae, 2004, 103(1): 93-99. [29] Bilger W, Bjorkman O. Role of the xanthophylls cycle, fluorescence and photosynthesis in Hedera canariensis[J]. Photosynthesis Research, 1990, 25(5): 173-185. [30] 姜义宝, 杨玉荣, 郑秋红. 外源一氧化氮对干旱胁迫下苜蓿幼苗抗氧化酶活性和叶绿素荧光特性的影响[J]. 干旱地区农业研究, 2008, 26(2): 65-68. [31] 樊洪泓, 李廷春, 李正鹏, 等. 强光胁迫下外源NO对霍山石斛叶绿素荧光和抗氧化系统的影响[J]. 园艺学报, 2008, 35(8): 1215-1220. [32] 谭石慈, 邢达, 唐永红, 等. 植物叶片超微弱发光光谱研究[J]. 光子学报, 2000, 29(11): 961-965. [33] 李德红, 唐永红, 何永红, 等. 白菜叶绿体的超弱发光机理初探[J]. 激光生物学报, 2002, 11(1): 64. [34] Boveris A, Cadenas E, Chance B. Ultraweak chemiluminescence: a sensitive assay for oxidative radical reactions[J]. Federation Proceedings, 1981, 40: 125-128. |