[1] 刘碧英, 潘远智, 赵杨迪. 沿阶草不同叶片对土壤铅胁迫的生理生化响应[J]. 草业学报, 2011, 20(4): 123-128. [2] 陈良, 刘兆普, 隆小华, 等. 镉胁迫下两种菊芋幼苗的光合作用特征及镉吸收转运差异的研究[J]. 草业学报, 2011, 20(6): 60-67. [3] Evangelou V P. Environmental Soil and Water Chemistry: Principles and Applications[D]. New York: John Wiley & Sons, 1998: 476-478. [4] 匡艺, 李廷轩, 余海英. 小黑麦植株铁、锰、铜、锌含量对氮素反应的品种差异及其类型[J]. 草业学报, 2011, 20(4): 82-89. [5] 张玉秀, 于飞, 张媛雅, 等. 植物对重金属镉的吸收转运和累积机制[J]. 中国生态农业学报, 2008, 16(5): 1317-1321. [6] Hasan S A, Fariduddin Q, Ali B, et al. Cadmium: Toxicity and tolerance in plants[J]. Journal of Environmental Biology, 2009, 30(2): 165-174. [7] Mench M, Morel J L, Guckert A. Metal binding properties of high molecular weight soluble exudates from maize (Zea mays) roots[J]. Biology and Fertility of Soils, 1987, 3(3): 165-169. [8] Seregin I V, Kozhevnikova A D. Roles of root and shoot tissues in transport and accumulation of cadmium, lead, nickel, and strontium[J]. Russian Journal of Plant Physiology, 2008, 55(1): 1-22. [9] Fan J L, Wei X Z, Wan L C, et al. Disarrangement of actin filaments and Ca2+ gradient by CdCl2 alters cell wall construction in Arabidopsis thaliana root hairs by inhibiting vesicular trafficking[J]. Journal of Plant Physiology, 2011, 168(11): 1157-1167. [10] Qureshi J A, Collin H A, Hardwick K, et al. Metal tolerance in tissue cultures of Anthoxanthum odoratum[J]. Plant Cell Reports, 1981, 1(2): 80-82. [11] Grebe M. Plant biology: unveiling the Casparian strip[J]. Nature, 2011, 473(7347): 294-295. [12] Alassimone J, Roppolo D, Geldner N, et al. The endodermis—development and differentiation of the plant’s inner skin[J]. Protoplasma, 2011, DOI: 10.1007/s00709-011-0302-5. [13] Zeier J, Schreiber L. Chemical composition of hypodermal and endodermal cell walls and xylem vessels isolated from Clivia miniata[J]. Plant Physiology, 1997, 113(4): 1223-1231. [14] Seregin I V, Ivanov V B. Histochemical investigation of cadmium and lead distribution in plants[J]. Russian Journal of Plant Physiology, 1997, 44(6): 791-796. [15] Cataldo D A, Garland T R, Wildung R E. Cadmium uptake kinetics in intact soybean plants[J]. Plant Physiology, 1983, 73(3): 844-848. [16] McCully M. How do real roots work? Some new views of root structure[J]. Plant Physiology, 1995, 109(1): 1-6. [17] Saathoff A J, Ahner B, Spanswick R M, et al. Detection of phytochelatin in the xylem sap of Brassica napus[J]. Environmental Engineering Science, 2011, 28(2): 103-111. [18] Senden M, Vand der Meer A, Verburg T G, et al. Effects of cadmium on the behaviour of citric acid in isolated tomato xylem cell walls[J]. Journal of Experimental Botany, 1994, 45(5): 597-606. [19] Salt D E, Prince R C, Pickering I J, et al. Mechanisms of cadmium mobility and accumulation in Indian mustard[J]. Plant Physiology, 1995, 109(4): 1427-1433. [20] Wei Z, Wong J W, Hong F, et al. Determination of inorganic and organic anions in xylem saps of two contrasting oilseed rape (Brassica juncea L.) varieties: Roles of anions in long-distance transport of cadmium[J]. Microchemical Journal, 2007, 86(1): 53-59. [21] Uraguchi S, Mori S, Kuramata M, et al. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice[J]. Journal of Experimental Botany, 2009, 60(9): 2677-2688. [22] 张永志, 赵首萍, 徐明飞, 等. 不同蒸腾作用对番茄幼苗吸收 Pb、Cd 的影响[J]. 生态环境学报, 2009, 18(2): 515-518. [23] Küpper H, Lombi E, Zhao F J, et al. Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri[J]. Planta, 2000, 212(1): 75-84. [24] Salt D E, Prince R C, Pickering I J, et al. Mechanisms of cadmium mobility and accumulation in Indian mustard[J]. Plant Physiology, 1995, 109(4): 1427-1433. [25] 王芳, 杨勇, 张燕, 等. 不同蔬菜对镉的吸收累积及亚细胞分布[J]. 农业环境科学学报, 2009, 28(1): 44-48. [26] 王华丙, 张振义, 包锐, 等. ABC转运蛋白的结构与转运机制[J]. 生命的化学, 2007, 27(3): 208-210. [27] Kim D-Y, Bovet L, Kushnir S, et al. AtATM3 is involved in heavy metal resistance in Arabidopsis[J]. Plant Physiology, 2006, 140(3): 922-932. [28] Bhuiyan M S U, Min S R, Jeong W J, et al. Overexpression of AtATM3 in Brassica juncea confers enhanced heavy metal tolerance and accumulation[J]. Plant Cell Tissue and Organ Culture, 2011, 107(1): 69-77. [29] Conte S S, Walker E L. Transporters contributing to iron trafficking in plants[J]. Molecular Plant, 2011, 4(3): 464-476. [30] Wycisk K, Kim E J, Schroeder J I, et al. Enhancing the first enzymatic step in the histidine biosynthesis pathway increases the free histidine pool and nickel tolerance in Arabidopsis thaliana[J]. FEBS Letters, 2004, 578(1-2): 128-134. [31] Lee M, Lee K, Lee J, et al. AtPDR12 contributes to lead resistance in Arabidopsis[J]. Plant Physiology, 2005, 138(2): 827-836. [32] Ann M. Ospdr9, which encodes a PDR-type ABC transporter, is induced by heavy metals, hypoxic stress and redox perturbations in rice roots[J]. FEBS Letters, 2003, 553(3): 370-376. [33] Klein M, Burla B, Martinoia E. The multidrug resistance-associated protein (MRP/ABCC) subfamily of ATP-binding cassette transporters in plants[J]. FEBS Letters, 2006, 580(4): 1112-1122. [34] Schneider T, Schellenberg M, Meyer S, et al. Quantitative detection of changes in the leaf-mesophyll tonoplast proteome in dependency of a cadmium exposure of barley (Hordeum vulgare L.) plants[J]. Proteomics, 2009, 9(10): 2668-2677. [35] Gaillard S, Jacquet H, Vavasseur A, et al. AtMRP6/AtABCC6, an ATP-binding cassette transporter gene expressed during early steps of seedling development and up-regulated by cadmium in Arabidopsis thaliana[J]. BMC Plant Biology, 2008, 8: 1-11. [36] Wojas S, Hennig J, Plaza S, et al. Ectopic expression of Arabidopsis ABC transporter MRP7 modifies cadmium root-to-shoot transport and accumulation[J]. Environmental Pollution, 2009, 157(10): 2781-2789. [37] Bovet L, Eggmann T, Meylan-Bettex M, et al. Transcript levels of AtMRPs after cadmium treatment: induction of AtMRP3[J]. Plant, Cell & Environment, 2003, 26(3): 371-381. [38] Tommasini R, Vogt E, Fromenteau M, et al. An ABC-transporter of Arabidopsis thaliana has both glutathione-conjugate and chlorophyll catabolite transport activity[J]. The Plant Journal, 2002, 13(6): 773-780. [39] Lee S, Kim Y Y, Lee Y, et al. Rice P1B-type heavy-metal ATPase, OsHMA9, is a metal efflux protein[J]. Plant Physiology, 2007, 145(3): 831-842. [40] 谭万能, 李志安, 邹碧. 植物对重金属耐性的分子机理[J]. 植物生态学报, 2006, 30(4): 703-712. [41] Banci L, Bertini I, Ciofi-Baffoni S, et al. Structural basis for metal binding specificity: the N-terminal cadmium binding domain of the P1-type ATPase CadA[J]. Journal of Molecular Biology, 2006, 356(3): 638-650. [42] Liu J, Dutta S J, Stemmler A J, et al. Metal-binding affinity of the transmembrane site in ZntA: Implications for metal selectivity[J]. Biochemistry, 2006, 45(3): 763-772. [43] Lee J, Bae H, Jeong J, et al. Functional expression of a bacterial heavy metal transporter in Arabidopsis enhances resistance to and decreases uptake of heavy metals[J]. Plant Physiology, 2003, 133: 589-596. [44] Gravot A, Lieutaud A, Verret F, et al. AtHMA3, a plant P-1B-ATPase, functions as a Cd/Pb transporter in yeast[J]. FEBS Letters, 2004, 561: 22-28. [45] Morel M, Crouzet J, Gravot A, et al. AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis[J]. Plant Physiology, 2009, 149(2): 894-904. [46] Ueno D, Yamaji N, Kono I, et al. Gene limiting cadmium accumulation in rice[J]. Proceedings of the National Academy of Sciences, 2010, 107(38): 16500-16505. [47] Mills R F, Francini A, Ferreira da Rocha PSC, et al. The plant P1B-type ATPase AtHMA4 transports Zn and Cd and plays a role in detoxification of transition metals supplied at elevated levels[J]. FEBS Letters, 2005, 579(3): 783-791. [48] Wong C K E, Cobbett C S. HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana[J]. New Phytologist, 2009, 181(1): 71-78. [49] Verret F, Gravot A, Auroy P, et al. Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance[J]. FEBS Letters, 2004, 576(3): 306-312. [50] Hanikenne M, Talke I N, Haydon M J, et al. Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4[J]. Nature, 2008, 453(7193): 391-395. [51] Guimaraes M A, Gustin J L, Salt D E. Reciprocal grafting separates the roles of the root and shoot in zinc hyperaccumulation in Thlaspi caerulescens[J]. New Phytologist, 2009, 184(2): 323-329. [52] Papoyan A, Kochian L V. Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase[J]. Plant Physiology, 2004, 136(3): 3814-3823. [53] Lee S, Kim Y Y, Lee Y, et al. Rice P1B-type heavy-metal ATPase, OsHMA9, is a metal efflux protein[J]. Plant Physiology, 2007, 145(3): 831-842. [54] Hirschi K D, Korenkov V D, Wilganowski N L, et al. Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance[J]. Plant Physiology, 2000, 124(1): 125-133. [55] Koren’kov V, Park S, Cheng N H, et al. Enhanced Cd2+-selective root-tonoplast-transport in tobaccos expressing Arabidopsis cation exchangers[J]. Planta, 2007, 225(2): 403-411. [56] Cheng N, Pittman J K, Shigaki T, et al. Characterization of CAX4, an Arabidopsis H+/cation antiporter[J]. Plant Physiology, 2002, 128(4): 1245-1254. [57] Berezin I, Mizrachy-Dagry T, Brook E, et al. Overexpression of AtMHX in tobacco causes increased sensitivity to Mg2+, Zn2+, and Cd2+ ions, induction of V-ATPase expression, and a reduction in plant size[J]. Plant Cell Reports, 2008, 27(5): 939-949. [58] Korshunova Y O, Eide D, Gregg Clark W, et al. The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range[J]. Plant Molecular Biology, 1999, 40(1): 37-44. [59] Kramer U, Talke I N, Hanikenne M. Transition metal transport[J]. FEBS Letters, 2007, 581(12): 2263-2272. [60] Arazi T, Sunkar R, Kaplan B, et al. A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants[J]. The Plant Journal, 1999, 20(2): 171-182. |