Acta Prataculturae Sinica ›› 2014, Vol. 23 ›› Issue (4): 171-180.DOI: 10.11686/cyxb20140421
• Orginal Article • Previous Articles Next Articles
LI Xi,WU Ya-jiao,SUN Ling-xia
Received:
2014-01-14
Online:
2014-08-20
Published:
2014-08-20
CLC Number:
LI Xi,WU Ya-jiao,SUN Ling-xia. Growth and physiological responses of three warm-season turfgrasses to lead stress[J]. Acta Prataculturae Sinica, 2014, 23(4): 171-180.
Reference:[1]Ameh E G, Akpah F A. Heavy metal pollution indexing and multivariate statistical evaluation of hydrogeo chemistry of River Pov in Itakpe Iron Ore mining area, Kogi State, Nigeria[J]. Advances in Applied Science Research, 2011, 2(1): 33-46.[2]Li R Q, Yu A F, Bai B. Analysis on current situation and potential ecological risk and the characteristic of heavy metals pollution of soil in the Central Plateau of Gansu Province, China[J]. Journal of Agro-Environment Science, 2013, 32(1): 103-110. [3]Bissenbaev A K, Ishchenko A A, Taipakova S M, et al. Presence of base excision repair enzymes in the wheat aleurone and their activation in cells undergoing programmed cell death[J]. Plant Physiology and Biochemistry, 2011, 49(10): 1155-1164.[4]Tanhan P, Kruatrachue M, Pokethitiyook P. Uptake and accumulation of cadmium, lead and zinc by Siam weed (Chromolaena odorata L. King & Robinson)[J]. Chemosphere, 2007, 68(2): 323-329.[5]Ding J J, Pan Y Z, Liu S L, et al. Effect and mechanisms of soil cadmium stress on Dianthus chinensis seedling growth[J]. Acta Prataculturae Sinica, 2013, 22(6): 77-85.[6]Min H, Zu Y Q, Li Y. Effects of Pb on the growth and physiological characteristics of Arenaria rotumdifolia Bieberstein[J]. Journal of Agro-Environment Science, 2010, 29(B03): 15-19. [7]Zhang X A, Li M Y, Wang Z H, et al. Effects of heavy metals and saline-alkali on seedlings growth,physiological-biochemical of Oryehophragmus violaeeus[J]. Acta Prataculturae Sinica, 2013, 22(2): 187-194.[8]Hou X L, Chen J S, Liu A Q, et al. Growth response and accumulation characteristics of Pogonatherum crinitum and Lsache globosa under the stress of lead[J]. Journal of Fujian Agriculture and Forestry University(Natural Science Edition), 2012, 41(3): 286-290. [9]Estrella G N, Mendoza C D, Moreno S R, et al. The Pb hyperaccumulator aquatic fern Salvinia minima Baker, responds to Pb(2+) by increasing phytochelatins via changes in SmPCS expression and in phytochelatin synthase activity[J]. Aquatic Toxicololy, 2009, 91(4): 320-328.[10]Wang H Z, He C P. Effects of the heavy metals stress on root growth and vigour of turfgrass[J]. Grassland of China, 2002, 24(3): 55-63.[11]Zhu Q H, Xia H X. Effects of Lead Stress on Antioxidant Enzyme System and Chlorophyll Content of Pteris vittata[J]. Guizhou Agricultural Sciences, 2012, 40(4): 56-58.[12]Zhao G, Zou L, Peng L X, et al. Effects of Lead Stress on Physiological Characteristics of Buckwheat[J]. Jiangsu Agricultural Sciences, 2012, 40(7): 98-100.[13]Wang H Z, Zhang X Q, He C P. Effects of lead on the activity of Superoxidate Dismutase (SOD) in the roots of Creeping Bent Seedlings[J]. Journal of Agro-Environment Sience, 2006, 25(3): 644-647. [14]Wang Z Y, Liao L, Yuan X J. Research progress on lead poisoning of turfgrasses[J]. Grassland and Turf, 2010, (2): 8-15.[15]Huang H G, Li Y X, Yang X E, et al. Research advances in plant lead tolerance and detoxification mechanism[J]. Chinese Journal of Applied Ecology, 2009, (3): 696-704. [16]Xue L, Liu J F, Shi S Q, et al. A review on the progress of proteomic study on plant responses to heavy metal stress[J]. Acta Prataculturae Sinica, 2013, 22(4): 300-311. [17]Nehnevajova E, Lyubenova L, Herzig R, et al. Metal accumulation and response of antioxidant enzymes in seedlings and adult sunflower mutants with improved metal removal traits on a metal-contaminated soil[J]. Environmental and Experimental Botany, 2012, 76(2): 39-48.[18]Anjum N A, Ahmad I, Mohmood I, et al. Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids[J]. Environmental and Experimental Botany, 2012, 75(1): 307-324. [19]Yang G, Wu J, Tang Y. Research advances in plant resistance mechanisms under lead stress[J]. Chinese Journal of Ecology, 2005, 24(12): 1507-1512. [20]Hernández Allica J, Garbisu C, Barrutia O, et al. EDTA induced heavy metal accumulation and phytotoxicity in cardoon plants[J]. Environmental and Experimental Botany, 2007, 60(1): 26-32. [21]Wang K. The stress responses and tolerance thresholds to Soil lead, Cadmiumand Zinc contamination in Centipedegrass and Ceashore paspalum[D]. Shanghai: Shanghai Jiaotong University, 2010. [22]Sun J X, Zhang Z H. A comparative sutdy of the above and under ground phytomass on turf grasses[J]. Pratacultural Science, 1996, 13(2): 57-60. [23]Zhang Z L. Plant Physiology experimental guidance[M]. Beijing: Higher Education Press, 2001. [24]Li H S. Plant Physiology and Biochemistry experimental principles and techniques[M]. Beijing: Higher Education Press, 2000: 134-261. [25]Xiong Q E. Plant physiology experiments Tutorials[M]. Chengdu: Sichuan Science and Technology Press, 2003: 72.[26]Hao Z B, Cang J, Xu Z. Plant physiology experiments[M]. Harbin: Harbin Institute of Technology Press, 2004: 111-114.[27]Zhu Y H. Lead tolerance and accumulation in turfgrass[D]. Yangzhou: Yangzhou University, 2007. [28]Hou X L. Response mechnism of Pb Hyperaccumulator Pogonatherum crunitum to Pb stress[D]. Fuzhou: Fujian Agriculture and Forestry University, 2013.[29]Wang H Z. Response mechanism and effect of some genes expression on Cadmium and Lead Ions stress in Creeping Bent and Perennial Ryegrass[D]. Ya'an: Sichuan Agricultural University, 2006.[30]Liu J X, Sun Z Y, Gou P, et al. Response of photosynthetic physiology of perennial ryegrass (Lolium perenne) to Cd2+ stress[J]. Acta Prataculturae Sinica, 2012, 21(3): 191-197. [31]He B, Ye H B, Yang X E. Effects of Pb on chlorophyll contents and antioxidant enzyme activity in leaf for Pb-accumulating and non-accumulating ecotypes of Sedum. Alfredii (Hance)[J]. Journal of Agro-Environment Science, 2003, 22(3): 274-278. [32]Tao L, Guo Y C, Li P, et al. Influence of lead stress on physiological characteristics of Pisu sativum L.,Glycinemax(L.)merr.and Phaseolus vulgaris L.[J]. Chinese Agricultural Science Bulletin, 2012, 33: 78-83. [33]Parys E, Romanowska E, Siedlecka, et al. The effect of lead on photosynthesis and respiration in detached leaves and in mesophyll protoplasts of Pisum sativum[J]. Acta Physiologiae Plantarum, 1998, 20(3): 313-322. [34]Verma S, Dubey R S. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants[J]. Plant Science, 2003, 164(4): 645-655. [35]Schützendübel A, Polle A. Plant responses to abiotic stresses: heavy metal induced oxidative stress and protection by mycorrhization[J]. Journal of Experimental Botany, 2002, 53: 1351-1365.[36]Hodge M, Rew C J, Johnson D A, et al. Antioxidant compound responses to chilling stress in differentially sensitive inbred maize lines[J]. Physiology Plant, 1996, 98(4): 685-692. [37]Meng X X, Long W, Zheng C, et al. Effects of lead stress on growth and physiology of Lobelia sequinii[J]. Journal of Sichuan Agricultural University, 2012, (3): 336-341.参考文献:[1]Ameh E G, Akpah F A. Heavy metal pollution indexing and multivariate statistical evaluation of hydrogeo chemistry of River Pov in Itakpe Iron-Ore mining area, Kogi State, Nigeria[J]. Advances in Applied Science Research, 2011, 2(1): 33-46.[2]李瑞琴, 于安芬, 白滨. 甘肃中部高原露地菜田土壤重金属污染及潜在生态风险分析[J]. 农业环境科学学报, 2013, 32(1): 103-110. [3]Bissenbaev A K, Ishchenko A A, Taipakova S M, et al. Presence of base excision repair enzymes in the wheat aleurone and their activation in cells undergoing programmed cell death[J]. Plant Physiology and Biochemistry, 2011, 49(10): 1155-1164.[4]Tanhan P, Kruatrachue M, Pokethitiyook P. Uptake and accumulation of cadmium, lead and zinc by Siam weed(Chromolaena odorata L. King & Robinson)[J]. Chemosphere, 2007, 68(2): 323-329.[5]丁继军, 潘远智, 刘柿良, 等. 土壤重金属镉胁迫对石竹幼苗生长的影响及其机理[J]. 草业学报, 2013, 22(6): 77-85.[6]闵焕, 祖艳群, 李元. Pb胁迫对圆叶无心菜(Arenaria rotumdifolia Bieberstein)生长和生理特征的影响[J]. 农业环境科学学报, 2010, 29(B03): 15-19. [7]张小艾, 李名扬, 汪志辉, 等. 重金属及盐碱对二月兰幼苗生长和生理生化的影响[J]. 草业学报, 2013, 22(2): 187-194.[8]侯晓龙, 陈加松, 刘爱琴, 等. Pb胁迫对金丝草和柳叶箬生长及富Pb特征的影响[J]. 福建农林大学学报(自然科学版), 2012, 41(3): 286-290. [9]Estrella G N, Mendoza C D, Moreno S R, et al. The Pb-hyperaccumulator aquatic fern Salvinia minimaBaker, responds to Pb(2+) by increasing phytochelatins via changes in SmPCS expression and in phytochelatin synthase activity[J]. Aquatic Toxicololy, 2009, 91(4): 320-328.[10]王慧忠, 何翠屏. 重金属离子胁迫对草坪草根系生长及其活力的影响[J]. 中国草地, 2002, 24(3): 55-63.[11]朱启红, 夏红霞. 铅胁迫对蜈蚣草抗氧化酶系统和叶绿素含量的影响[J]. 贵州农业科学, 2012, 40(4): 56-58.[12]赵钢, 邹亮, 彭镰心, 等. 铅胁迫对苦荞生理特性的影响[J]. 江苏农业科学, 2012, 40(7): 98-100.[13]王慧忠, 张新全, 何翠屏. Pb对匍匐翦股颖根系超氧化物歧化酶活性的影响[J]. 农业环境科学学报, 2006, 25(3): 644-647. [14]王志勇, 廖丽, 袁学军. 重金属铅对草坪植物的毒害研究进展[J]. 草原与草坪, 2010, (2): 8-15.[15]黄化刚, 李廷轩, 杨肖娥, 等. 植物对铅胁迫的耐性及其解毒机制研究进展[J]. 应用生态学报, 2009, (3): 696-704. [16]薛亮, 刘建锋, 史胜青, 等. 植物响应重金属胁迫的蛋白质组学研究进展[J]. 草业学报, 2013, 22(4): 300-311. [17]Nehnevajova E, Lyubenova L, Herzig R, et al. Metal accumulation and response of antioxidant enzymes in seedlings and adult sunflower mutants with improved metal removal traits on a metal-contaminated soil[J]. Environmental and Experimental Botany, 2012, 76(2): 39-48.[18]Anjum N A, Ahmad I, Mohmood I, et al. Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids[J]. Environmental and Experimental Botany, 2012, 75(1): 307-324. [19]杨刚, 伍钧, 唐亚. 铅胁迫下植物抗性机制的研究进展[J]. 生态学杂志, 2005, 24(12): 1507-1512. [20]Hernández-Allica J, Garbisu C, Barrutia O, et al. EDTA-induced heavy metal accumulation and phytotoxicity in cardoon plants[J]. Environmental and Experimental Botany, 2007, 60(1): 26-32. [21]王恺. 假俭草和海滨雀稗对土壤Pb、Cd、Zn污染胁迫的响应及耐受阈值研究[D]. 上海: 上海交通大学, 2010. [22]孙吉雄, 张志豪. 几种草坪草地上和地下植物量的比较研究[J]. 草业科学, 1996, 13(2): 57-60. [23]张志良. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2001. [24]李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000: 134-261. [25]熊庆娥. 植物生理学实验教程[M]. 成都: 四川科学技术出版社, 2003: 72.[26]郝再彬, 苍晶, 徐仲. 植物生理实验[M]. 哈尔滨: 哈尔滨工业大学出版社, 2004: 111-114.[27]朱燕华. 草坪植物对铅的耐性及富集特性研究[D]. 扬州: 扬州大学, 2007. [28]侯晓龙. 铅超富集植物金丝草对Pb胁迫的响应机制研究[D]. 福州: 福建农林大学, 2013.[29]王慧忠. 匍匐翦股颖和多年生黑麦草对镉、铅胁迫的响应及部分基因表达调控机理研究[D]. 雅安: 四川农业大学, 2006.[30]刘俊祥, 孙振元, 勾萍, 等. 镉胁迫下多年生黑麦草的光合生理响应[J]. 草业学报, 2012, 21(3): 191-197. [31]何冰, 叶海波, 杨肖娥. 铅胁迫下不同生态型东南景天叶片抗氧化酶活性及叶绿素含量比较[J]. 农业环境科学学报, 2003, 22(3): 274-278. [32]陶玲, 郭永春, 李萍, 等. 铅胁迫对3种豆类作物生理特性的影响[J]. 中国农学通报, 2012, 33: 78-83. [33]Parys E, Romanowska E, Siedlecka, et al. The effect of lead on photosynthesis and respiration in detached leaves and in mesophyll protoplasts of Pisum sativum[J]. Acta Physiologiae Plantarum, 1998, 20(3): 313-322. [34]Verma S, Dubey R S. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants[J]. Plant Science, 2003, 164(4): 645-655. [35]Schützendübel A, Polle A. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization[J]. Journal of Experimental Botany, 2002, 53:1351-1365.[36]Hodge M, Rew C J, Johnson D A, et al. Antioxidant compound responses to chilling stress in differentially sensitive inbred maize lines[J]. Physiology Plant, 1996, 98(4): 685-692. [37]孟晓霞, 龙巍, 郑超, 等. 铅胁迫对西南山梗菜生长及逆境生理指标的影响[J]. 四川农业大学学报, 2012, (3): 336-341. |
[1] | DUAN Xiao-feng, ZHANG Lei, WEI Jian-guo, ZHU Yong-ning, YANG Yang, JIN Fei. Prediction of pasture reviving period and analysis of its climate potential productivity [J]. Acta Prataculturae Sinica, 2014, 23(2): 1-8. |
[2] | DING Ji-jun, PAN Yuan-zhi,LIU Shi-liang, HE Yang, WANG Li, LI Li. Effect and mechanisms of soil cadmium stress on Dianthus chinensis seedling growth [J]. Acta Prataculturae Sinica, 2013, 22(6): 77-87. |
[3] | CHEN Qun, YUAN Xiao-jun, HE Ya-li. Screening molecular markers for heat tolerance and its relation to summer tolerance in tall fescue single plants [J]. Acta Prataculturae Sinica, 2013, 22(5): 84-95. |
[4] | ZHANG Ying, ZHU Ying, YAO Tuo,QI Juan, RONG Liang-yan. Interactions of four PGPRs isolated from pasture rhizosphere [J]. Acta Prataculturae Sinica, 2013, 22(1): 29-37. |
[5] | MA Ying, GUO Li-quan, ZHANG Shu-fang, WANG Xiao-ping, SHI De-cheng. Solute accumulation and distribution traits of an alkali resistant forage plant Kochia sieversiana and physiological contribution of organic acid under salt and alkali stresses [J]. Acta Prataculturae Sinica, 2013, 22(1): 193-200. |
[6] | FENG De-qing, HUANG Qin-lou, LI Chun-yan, HUANG Xiu-sheng, ZHONG Zhen-mei. A study on fatty acid components of twenty-eight forages [J]. Acta Prataculturae Sinica, 2011, 20(6): 214-218. |
[7] | HUANGFU Chao-he, CHEN Dong-qing, WANG Nan-nan, YANG Dian-lin. The mutual allelopathic effect between invasive plant Flaveria bidentis and four forgage species [J]. Acta Prataculturae Sinica, 2010, 19(4): 22-32. |
[8] | WEI Lan-ying, ZENG Dan-juan, ZHANG Jian-liang, YOU Ye-ming, JIAO Ji-fei, HUANG Yu-qing. The photosynthetic characteristics of four forage grasses in Karst rock desertification areas [J]. Acta Prataculturae Sinica, 2010, 19(3): 212-219. |
[9] | DAI Ping-li, ZHOU Shou-biao, LIU Shou-feng, LIU Kun,YU Hai-bo,WANG Ji-ming. Dynamic changes in morphological and physiological characteristics and above-ground nutrients of Carex thunbergii after light grazing [J]. Acta Prataculturae Sinica, 2009, 18(4): 47-53. |
[10] | RONG Li, LI Xian-wei, ZHU Tian-hui, ZHANG Jian, YUAN Wei-yang, WANG Qiao. Varieties of soil microorganisms decomposing Betula luminifera fine roots and Hemarthria compressa roots [J]. Acta Prataculturae Sinica, 2009, 18(4): 117-124. |
[11] | LV Yu-hua, ZHENG Da-wei. Mechanisms and effects of agro-pastoral system coupling in the Inner Mongolian ecotone [J]. Acta Prataculturae Sinica, 2009, 18(4): 217-223. |
[12] | LIU Tai-yu, LI Meng-yun, NIE Fu-rong, LIU Qing-hua, WANG Yan-ling. A study on changes of amino acid profiles after 6 or 16 h rumen degradation of 2 legumes at different maturities [J]. Acta Prataculturae Sinica, 2009, 18(1): 105-111. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||