Acta Prataculturae Sinica ›› 2014, Vol. 23 ›› Issue (6): 176-188.DOI: 10.11686/cyxb20140622
• Orginal Article • Previous Articles Next Articles
XU Pei-xian,FEI Ling,CHEN Xu-bing,WANG Zhao-long
Received:
2013-12-02
Online:
2014-12-20
Published:
2014-12-20
CLC Number:
XU Pei-xian,FEI Ling,CHEN Xu-bing,WANG Zhao-long. Cadmium tolerance and accumulation in four cool-season turfgrasses[J]. Acta Prataculturae Sinica, 2014, 23(6): 176-188.
Reference:[1]Dong W Q Y,Cui Y,Liu X.Instances of soil and crop heavy metal contamination in China[J]. Soil and Sediment Contamination, 2001, 10(5): 497-510.[2]Komarnicki G J K.Lead and cadmium in indoor air and the urban environment[J]. Environmental Pollution, 2005, 136(1): 47-61.[3]Arao T, Ishikawa S, Murakami M,et al.Heavy metal contamination of agricultural soil and countermeasures in Japan[J]. Paddy and Water Environment, 2010, 8(3): 247-257.[4]Buendía González L,Orozco Villafuerte J,Cruz Sosa F,et al.Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant[J]. Bioresource Technology, 2010, 101(15): 5862-5867.[5]Jabeen R, Ahmad A, Iqbal M.Phytoremediation of heavy metals: Physiological and molecular mechanisms[J]. The Botanical Review, 2009, 75(4): 339-364.[6]Wei S H,Zhou Q X,Wang X,et al.A newly discovered Cd hyperaccumulator Solanum nigrum L.[J]. Chinese Science Bulletin, 2005, 50(1): 33-38.[7]Sun Y B,Zhou Q X,Wang L,et al.Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator[J]. Journal of Hazardous Materials, 2009, 161(2-3): 808-814.[8]Lie F H.Cd hyper-accumulator Phytolacca acinosa Roxb and Cd-accumulative characteristics[J].Ecology and Environment Sciences, 2006, 15(2): 303-306.[9]Liu W,Shu W S,Lan C Y.Viola baoshanensis,a plant that hyperaccumulates cadmium[J].Chinese Science Bulletin, 2004, 49(1): 29-32.[10]Long X X,Wang Y H,Liu H Y.Growth response and uptake differences between two ecotypes of Sedum alfrredii to soils Cd[J].Journal of Plant Ecology, 2008, 32(1): 168-175.[11]Brown S L,Chaney R L,Angle J S,et al.Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc-and cadmium-contaminated soil[J]. Journal of Environmental Quality, 1994, 23(6): 1151-1157.[12]Sridhar B B M,Diehl S V, Han F X,et al.Anatomical changes due to uptake and accumulation of Zn and Cd in Indian mustard (Brassica juncea)[J]. Environmental and Experimental Botany, 2005, 54(2): 131-141.[13]Singh O V,Labana S,Pandey G,et al. Phytoremediation: an overview of metallic ion decontamination from soil[J]. Applied Microbiology and Biotechnology, 2003, 61: 405-412.[14]Dary M, Chamber Pérez M A,Palomares A J,et al.“In situ”phytostabilization of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria[J]. Journal of Hazardous Materials, 2010, 177(1-3): 323-330.[15]Alvarenga P,Gon alves A P,Fernandes R M,et al.Evaluation of composts and liming materials in the phytostabilization of a mine soil using perennial ryegrass[J]. Science of The Total Environment, 2008, 406: 43-56.[16]Zhang X F,Xia H P,Li Z A,et al.Potential of four forage grasses in remediation of Cd and Zn contaminated soils[J]. Bioresource Technology, 2010, 101(6): 2063-2066.[17]Chen Y,Shen Z,Li X.The use of vetiver grass (Vetiveria zizanioides)in the phytoremediation of soils contaminated with heavy metals[J]. Applied Geochemistry, 2004, 19(10): 1553-1565.[18]Xu P X,Wang Z L.Physiological mechanism of hypertolerance of cadmium in Kentucky bluegrass and tall fescue:Chemical forms and tissue distribution[J]. Environmental and Experimental Botany, 2013, 96: 35-42.[19]Steinke K,Stier J C.Nitrogen selection and growth regulator applications for improving shaded turf performance[J]. Crop Science, 2003, 43: 1399-1406.[20]DaCosta M,Wang Z L,Huang B R. Physiological adaptation of Kentucky bluegrass to localized soil drying[J]. Crop Science, 2004, 44: 307-314.[21]Yang X E, Long X X, Ye H B,et al. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance)[J]. Plant and Soil, 2004, 259: 181-189.[22]Liu X Q, Peng K J, Wang A G,et al. Cadmium accumulation and distribution in populations of Phytolacca americana L. and the role of transpiration[J]. Chemosphere, 2010, 78(9): 1136-1141.[23]Zhang S R,Chen M Y,Li T,et al.A newly found cadmium accumulator Malva sinensis Cavan[J].Journal of Hazardous Materials, 2010, 173(1-3): 705-709.[24]Zhuang P,Ye Z H,Lan C Y,et al.Chemically assisted phytoextraction of heavy metal contaminated soils using three plant species[J]. Plant and Soil, 2005, 276(1-2): 153-162.[25]Zhao F J, Lombi E, McGrath S P. Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens[J]. Plant and Soil, 2003, 249: 37-43.[26]Pietrini F, Zacchini M, Iori V,et al.Spatial distribution of cadmium in leaves and its impact on photosynthesis:examples of different strategies in willow and poplar clones[J]. Plant Biology, 2009, 12(2): 355-363.[27]Liu S L,Shi X L,Pan Y Z,et al .Effects of cadmium stress on growth, accumulation and distribution of biomass and nutrient in Catharanthus roseus[J]. Acta Prataculturae Sinica, 2013, 22(3): 154-161.[28]Ding J J,Pan Y Z,Liu S L,et al.Effect and mechanisms of soil cadmium stress on Dianthus chinensis seedling growth[J]. Acta Prataculturae Sinica, 2013, 22(6): 77-85.[29]Krupa Z, Baszynski T.Some aspects of heavy metals toxicity towards photosynthetic apparatus:direct and indirect effects on light and dark reactions[J]. Acta Physiologiae Plantarum, 1995, 7: 55-64.[30]Zhang X A,Li M Y,Wang Z H,et al. Effects of heavy metals and saline-alkali on seedlings growth,physiological-biochemical of Oryehophragmus violaeeus[J]. Acta Prataculturae Sinica, 2013, 22(2): 187-194.[31]Ayeni O O, Ndakidemi P A, Snyman R G,et al.Chemical, biological and physiological indicators of metal pollution in wetlands[J]. Scientific Research and Essays, 2010, 5(15): 1938-1949.[32]Breckle S W, Kahle H.Effects of toxic heavy metals (Cd, Pb) on growth and mineral nutrition of beech (Fagus sylvatica L.)[J]. Vegetatio, 1992, 101: 43-53.[33]Liu Y M,Wang K,Xu P X,et al. Physiological responses and tolerance threshold to cadmium contamination in Eremochloa ophiuroides[J]. International Journal of Phytoremediation, 2012, 14(5): 467-480.[34]Ci D W,Jiang D,Wollenweber B,et al.Cadmium stress in wheat seedlings:growth, cadmium accumulation and photosynthesis[J]. Acta Physiologiae Plantarum, 2009, 32(2): 365-373.[35]Shi G R, Cai Q S.Cadmium tolerance and accumulation in eight potential energy crops[J]. Biotechnology Advances, 2009, 27(5): 555-561.[36]Sun Y B,Zhou Q X,Diao C Y.Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L.[J]. Bioresource Technology, 2008, 99(5): 1103-1110.[37]Wang M J,Wang W X.Cadmium in three marine phytoplankton:Accumulation, subcellular fate and thiol induction[J]. Aquatic Toxicology, 2009, 95(2): 99-107.[38]Sun R L,Jin C X,Zhou Q X.Characteristics of cadmium accumulation and tolerance in Rorippa globosa (Turcz.) Thell., a species with some characteristics of cadmium hyperaccumulation[J]. Plant Growth Regulation, 2010, 61(1): 67-74.[39]Wei S H, Zhou Q X,Mathews S.A newly found cadmium accumulator Taraxacum mongolicum[J]. Journal of Hazardous Materials, 2008, 159: 544-547.[40]Baker A J M,Brooks R R.Terrestrial higher plants which hyperaccumulate metallic elements-a review of their distribution, ecology and phytochemistry[J]. Biorecovery, 1989, 1(2): 81-126.[41]Baker A J M,Reeves R D,Hajar A S M.Heavy metal accumulation and tolerance in British population of the metallophyte Thlaspi caerulescens J.& C. Presl (Brassicaceae)[J]. New Phytologist, 1994, 127: 61-68.[42]Chaney R L, Malik M, Li Y M,et al.Phytoremediation of soil metals[J].Current Opinion in Biotechnology, 1997, 8(3): 279-284.[43]Ma L Q, Komar K M, Tu C,et al. A fern that hyperaccumulates arsenic[J].Nature, 2001, 409: 579.[44]Wei S H, Zhou Q X, Koval P V. Flowering stage characteristics of cadmium hyperaccumulator Solanum nigrum L. and their significance to phytoremediation[J]. Science of The Total Environment, 2006, 369(1-3): 441-446.[45]Blaylock M J, David E, Dushenkov S,et al. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents[J]. Environmental Science and Technology, 1997, 31(3): 860-865.[46]Zhuang P, Yang Q W, Wang H B, et al. Phytoextraction of heavy metals by eight plant species in the field[J]. Water, Air, and Soil Pollution, 2007, 184(1-4): 235-242.[47]Hernández-Allica J, Becerril J M, Garbisu C.Assessment of the phytoextraction potential of high biomass crop plants[J]. Environmental Pollution, 2008, 152(1): 32-40.[48]Rebele F, Lehmann C. Phytoextraction of cadmium and phytostabilisation with mugwort (Artemisia vulgaris)[J]. Water, Air, and Soil Pollution, 2011, 216(1-4): 93-103.参考文献:[1]Dong W Q Y, Cui Y, Liu X. Instances of soil and crop heavy metal contamination in China[J]. Soil and Sediment Contamination, 2001, 10(5): 497-510.[2]Komarnicki G J K. Lead and cadmium in indoor air and the urban environment[J]. Environmental Pollution, 2005, 136(1): 47-61.[3]Arao T, Ishikawa S, Murakami M,et al. Heavy metal contamination of agricultural soil and countermeasures in Japan[J]. Paddy and Water Environment, 2010, 8(3): 247-257.[4]Buendía-González L, Orozco-Villafuerte J, Cruz-Sosa F,et al. Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant[J]. Bioresource Technology, 2010, 101(15): 5862-5867.[5]Jabeen R, Ahmad A, Iqbal M. Phytoremediation of heavy metals:Physiological and molecular mechanisms[J]. The Botanical Review, 2009, 75(4): 339-364.[6]Wei S H, Zhou Q X, Wang X,et al. A newly-discovered Cd-hyperaccumulator Solanum nigrum L.[J]. Chinese Science Bulletin, 2005, 50(1): 33-38.[7]Sun Y B, Zhou Q X, Wang L,et al. Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator[J]. Journal of Hazardous Materials, 2009, 161(2-3): 808-814.[8]聂发辉. 镉超富集植物商陆及其富集效应[J]. 生态环境, 2006, 15(2): 303-306.[9]Liu W, Shu W S, Lan C Y. Viola baoshanensis, a plant that hyperaccumulates cadmium[J]. Chinese Science Bulletin, 2004, 49(1): 29-32.[10]Long X X, Wang Y H, Liu H Y. Growth response and uptake differences between two ecotypes of Sedum alfrredii to soils Cd[J]. Journal of Plant Ecology, 2008, 32(1): 168-175.[11]Brown S L, Chaney R L, Angle J S,et al. Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc-and cadmium-contaminated soil[J]. Journal of Environmental Quality, 1994, 23(6): 1151-1157.[12]Sridhar B B M, Diehl S V, Han F X,et al. Anatomical changes due to uptake and accumulation of Zn and Cd in Indian mustard (Brassica juncea)[J]. Environmental and Experimental Botany, 2005, 54(2): 131-141.[13]Singh O V, Labana S, Pandey G,et al. Phytoremediation:an overview of metallic ion decontamination from soil[J]. Applied Microbiology and Biotechnology, 2003, 61: 405-412.[14]Dary M, Chamber-Pérez M A, Palomares A J,et al. “In situ” phytostabilization of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria[J]. Journal of Hazardous Materials, 2010, 177(1-3): 323-330.[15]Alvarenga P, Gonalves A P, Fernandes R M,et al. Evaluation of composts and liming materials in the phytostabilization of a mine soil using perennial ryegrass[J]. Science of The Total Environment, 2008, 406: 43-56.[16]Zhang X F, Xia H P, Li Z A,et al. Potential of four forage grasses in remediation of Cd and Zn contaminated soils[J]. Bioresource Technology, 2010, 101(6): 2063-2066.[17]Chen Y, Shen Z, Li X. The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals[J]. Applied Geochemistry, 2004, 19(10): 1553-1565.[18]Xu P X, Wang Z L. Physiological mechanism of hypertolerance of cadmium in Kentucky bluegrass and tall fescue:Chemical forms and tissue distribution[J]. Environmental and Experimental Botany, 2013, 96: 35-42.[19]Steinke K, Stier J C. Nitrogen selection and growth regulator applications for improving shaded turf performance[J]. Crop Science, 2003, 43: 1399-1406.[20]DaCosta M, Wang Z L, Huang B R. Physiological adaptation of Kentucky bluegrass to localized soil drying[J]. Crop Science, 2004, 44: 307-314.[21]Yang X E, Long X X, Ye H B,et al. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance)[J]. Plant and Soil, 2004, 259: 181-189.[22]Liu X Q, Peng K J, Wang A G,et al. Cadmium accumulation and distribution in populations of Phytolacca americana L. and the role of transpiration[J]. Chemosphere, 2010, 78(9): 1136-1141.[23]Zhang S R, Chen M Y, Li T,et al. A newly found cadmium accumulator-Malva sinensis Cavan[J]. Journal of Hazardous Materials, 2010, 173(1-3): 705-709.[24]Zhuang P, Ye Z H, Lan C Y,et al. Chemically assisted phytoextraction of heavy metal contaminated soils using three plant species[J]. Plant and Soil, 2005, 276(1-2): 153-162.[25]Zhao F J, Lombi E, McGrath S P. Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens[J]. Plant and Soil, 2003, 249: 37-43.[26]Pietrini F, Zacchini M, Iori V,et al. Spatial distribution of cadmium in leaves and its impact on photosynthesis:examples of different strategies in willow and poplar clones[J]. Plant Biology, 2009, 12(2): 355-363.[27]刘柿良, 石新生, 潘远智, 等. 镉胁迫对长春花生长, 生物量及养分积累与分配的影响[J]. 草业学报, 2013, 22(3): 154-161.[28]丁继军, 潘远智, 刘柿良, 等. 土壤重金属镉胁迫对石竹幼苗生长的影响及其机理[J]. 草业学报, 2013, 22(6): 77-85.[29]Krupa Z, Baszynski T. Some aspects of heavy metals toxicity towards photosynthetic apparatus:direct and indirect effects on light and dark reactions[J]. Acta Physiologiae Plantarum, 1995, 7: 55-64.[30]张小艾, 李名扬, 汪志辉, 等. 重金属及盐碱对二月兰幼苗生长和生理生化的影响[J]. 草业学报, 2013, 22(2): 187-194.[31]Ayeni O O, Ndakidemi P A, Snyman R G,et al. Chemical, biological and physiological indicators of metal pollution in wetlands[J]. Scientific Research and Essays, 2010, 5(15): 1938-1949.[32]Breckle S W, Kahle H. Effects of toxic heavy metals (Cd, Pb) on growth and mineral nutrition of beech (Fagus sylvatica L.)[J]. Vegetatio, 1992, 101: 43-53.[33]Liu Y M, Wang K, Xu P X,et al. Physiological responses and tolerance threshold to cadmium contamination in Eremochloa ophiuroides[J]. International Journal of Phytoremediation, 2012, 14(5): 467-480.[34]Ci D W, Jiang D, Wollenweber B,et al. Cadmium stress in wheat seedlings:growth, cadmium accumulation and photosynthesis[J]. Acta Physiologiae Plantarum, 2009, 32(2): 365-373.[35]Shi G R, Cai Q S. Cadmium tolerance and accumulation in eight potential energy crops[J]. Biotechnology Advances, 2009, 27(5): 555-561.[36]Sun Y B, Zhou Q X, Diao C Y. Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L.[J]. Bioresource Technology, 2008, 99(5): 1103-1110.[37]Wang M J, Wang W X. Cadmium in three marine phytoplankton:Accumulation, subcellular fate and thiol induction[J]. Aquatic Toxicology, 2009, 95(2): 99-107.[38]Sun R L, Jin C X, Zhou Q X. Characteristics of cadmium accumulation and tolerance in Rorippa globosa (Turcz.) Thell., a species with some characteristics of cadmium hyperaccumulation[J]. Plant Growth Regulation, 2010, 61(1): 67-74.[39]Wei S H, Zhou Q X, Mathews S. A newly found cadmium accumulator-Taraxacum mongolicum[J]. Journal of Hazardous Materials, 2008, 159: 544-547.[40]Baker A J M, Brooks R R. Terrestrial higher plants which hyperaccumulate metallic elements-a review of their distribution, ecology and phytochemistry[J]. Biorecovery, 1989, 1(2): 81-126.[41]Baker A J M, Reeves R D, Hajar A S M. Heavy metal accumulation and tolerance in British population of the metallophyte Thlaspi caerulescens J.& C. Presl (Brassicaceae)[J]. New Phytologist, 1994, 127: 61-68.[42]Chaney R L, Malik M, Li Y M,et al. Phytoremediation of soil metals[J]. Current Opinion in Biotechnology, 1997, 8(3): 279-284.[43]Ma L Q, Komar K M, Tu C,et al. A fern that hyperaccumulates arsenic[J]. Nature, 2001, 409: 579.[44]Wei S H, Zhou Q X, Koval P V. Flowering stage characteristics of cadmium hyperaccumulator Solanum nigrum L. and their significance to phytoremediation[J]. Science of The Total Environment, 2006, 369(1-3): 441-446.[45]Blaylock M J, David E, Dushenkov S,et al. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents[J]. Environmental Science and Technology, 1997, 31(3): 860-865.[46]Zhuang P, Yang Q W, Wang H B,et al. Phytoextraction of heavy metals by eight plant species in the field[J]. Water, Air, and Soil Pollution, 2007, 184(1-4): 235-242.[47]Hernández-Allica J, Becerril J M, Garbisu C. Assessment of the phytoextraction potential of high biomass crop plants[J]. Environmental Pollution, 2008, 152(1): 32-40.[48]Rebele F, Lehmann C. Phytoextraction of cadmium and phytostabilisation with mugwort (Artemisia vulgaris)[J]. Water, Air, and Soil Pollution, 2011, 216(1-4): 93-103. |
[1] | WANG Jing-hong,DUO Duo. Effect of paclobutrazol on drought resistance of six turfgrass cultivars during the seedling stage [J]. Acta Prataculturae Sinica, 2014, 23(6): 253-258. |
[2] | LIU Qiang,YAO Tuo,MA Hui-ling. Combined effects of bio-fertilizer and citric acid on turf quality and soil biology on a calcareous soil [J]. Acta Prataculturae Sinica, 2014, 23(5): 223-230. |
[3] | DAI Zi-yun,GAO Chen-hao,SONG Zheng,PUYANG Xue-hua,WANG Chang-jun,HAN Lie-bao. Evaluation of the value of ecosystem services of Beijing Honghua golf course [J]. Acta Prataculturae Sinica, 2014, 23(3): 30-38. |
[4] | CHEN Wei,ZHANG Miao-miao,SONG Yang-yang,CHEN Jian-gang,ZHANG De-gang. Impacts of heavy metals on the fluorescence characteristics and root morphology of 2 turfgrass species [J]. Acta Prataculturae Sinica, 2014, 23(3): 333-342. |
[5] | LUO Yao, XI Jia-bin, TAN Xiao-hong, ZHANG Ju-ming. Evaluation of shade tolerance of nine warm-season turfgrass and selection of their shade tolerant indices [J]. Acta Prataculturae Sinica, 2013, 22(5): 239-247. |
[6] |
FU Ling, WANG Cai-yun, YIN Shao-hua.
Optimizing fertilisation for bermudagrass soilless sod using spent mushroom compost as the main substrate over plastic [J]. Acta Prataculturae Sinica, 2013, 22(3): 241-. |
[7] | GU Jia-lin, BIAN Xiu-ju, XU Kai, ZHANG Dong-lei, ZHU Wen, LIU Bao-cun, ZHAO Tong-ke, FANG Rui-yuan, CAO Bing, ZOU Guo-yuan. Effects of different slow/controlled release nitrogen fertilizer on tall fescue turf growth and nitrogen volatilization [J]. Acta Prataculturae Sinica, 2013, 22(2): 235-242. |
[8] | WANG Li-hua, LI Xi, LIU Wei, GAN You-min. A study on resistance and purifying ability of SO2 on four warm-season turfgrasses [J]. Acta Prataculturae Sinica, 2013, 22(1): 225-233. |
[9] | LIU Jin-ping, YOU Ming-hong. Effect of intrusion volume of Imperata koenigii on relative competitiveness and traits of young Festuca arundinacea turf [J]. Acta Prataculturae Sinica, 2012, 21(6): 315-320. |
[10] | XIAO Bo, SONG Gui-long, XU Li-xin, HAN Lie-bao. A novel method for building of traffic tolerance experiment of turf grass [J]. Acta Prataculturae Sinica, 2012, 21(5): 144-152. |
[11] | SHI Pei, LI Rui-jun, ZHANG Ju-ming. A study on utilization of recycled clippings on a golf course [J]. Acta Prataculturae Sinica, 2012, 21(5): 153-159. |
[12] | XIAO Bo, SONG Gui-long, HAN Lie-bao, BAO Yong-xia, LI Fei-fei, CHEN Ai-xia. A comprehensive evaluation of turfgrass quality based on a BP and RBF neural network model [J]. Acta Prataculturae Sinica, 2012, 21(4): 275-281. |
[13] | FAN Rui-ping, ZHOU Qin, ZHOU Bo, JIANG Hai-dong. Effects of salinization stress on growth and the antioxidant system of tall fescue [J]. Acta Prataculturae Sinica, 2012, 21(1): 112-117. |
[14] | ZHANG Xu, WANG Quan-zhen, CUI Jian, RAYMOND S A. Study on fertilizer and planting depth in bermudagrass sprigs growth and establishment [J]. Acta Prataculturae Sinica, 2011, 20(5): 237-244. |
[15] | TAI Jian-hui, WANG Yan-rong, LI Xiao-xia, WEI Xue, CHEN Gu. Effects of different mulching on the establishment of Cleistogenes songorica [J]. Acta Prataculturae Sinica, 2011, 20(3): 287-291. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||