[1] Teng Z Q, Li X D, Han H G, et al . Effects of land use patterns on soil phosphorus fractions in the Longzhong part of the Loess Plateau. Acta Prataculturae Sinica, 2013, 22(2): 30-37. [2] Stutter M I, Shand C A, George T S, et al . Recovering phosphorus from soil: A root solution. Environmental Science & Technology, 2012, 46(4): 1977-1978. [3] Zhang F S, Wang J Q, Zhang W F, et al . Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedologica Sinica, 2008, 9(5): 915-924. [4] Zhang X Z, Yang X B, Li T X, et al . Characteristics of phosphorus uptake and phosphorus fractions in the rhizosphere among different phosphorus efficiency wheat cultivars. Scientia Agricultura Sinica, 2012, 45(15): 3083-3092. [5] Liu S, Li T X, Ji L, et al . Phosphorus accumulation and root morphological difference of two ecotypes of Pilea sinofasciata grown in different phosphorus treatments. Acta Prataculturae Sinica, 2013, 22(3): 211-217. [6] Marschner P, Solaiman Z, Rengel Z. Brassica genotypes differ in growth, phosphorus uptake and rhizosphere properties under P-limiting conditions. Soil Biology and Biochemistry, 2007, 39(1): 87-98. [7] Lv Y, Cheng W D, Huang K, et al . Comparison of rhizosphere processes of Vicia sativa and Vicia villosa in response to phosphorus deficiency. Plant Nutrition and Fertilizer Science, 2011, 17(3): 674-679. [8] Li Y F, Luo A C, Wu L H, et al . Difference in P utilization from organic phosphate between two rice genotypes and its relations with root secreted acid phosphatase activity. Chinese Journal of Applied Ecology, 2009, 20(5): 1072-1078. [9] Zhang H W, Huang Y, Ye X S, et al . Analysis of the contribution of acid phosphatase to P efficiency in Brassica napus under low phosphorus conditions. Science China Life Sciences, 2010, 53(6): 709-717. [10] Chen Y M, Wang M K, Zhuang S Y, et al . Chemical and physical properties of rhizosphere and bulk soils of three tea plants cultivated in Ultisols. Geoderma, 2006, 136(1): 378-387. [11] Wang W H, Zhou X B, Zhou Y X, et al . The mechanism of rhizosphere phosphorus activation of two rape genotypes ( Brassica napus L.) with different P efficiencies. Plant Nutrition and Fertilizer Science, 2011, 17(6): 1379-1387. [12] Tabaldi L A, Ruppenthal R, Cargnelutti D, et al . Effects of metal elements on acid phosphatase activity in cucumber ( Cucumis sativus L.) seedlings. Environmental and Experimental Botany, 2007, 59(1): 43-48. [13] Nanamori M, Shinano T, Wasaki J, et al . Low phosphorus tolerance mechanisms: phosphorus recycling and photosynthate partitioning in the tropical forage grass, Brachiaria hybrid cultivar mulato compared with rice. Plant and Cell Physiology, 2004, 45(4): 460-469. [14] George S T, Gregory P J, Hocking P, et al . Variation in root-associated phosphatase activities in wheat contributes to the utilization of organic P substrates in vitro, but does not explain differences in the P-nutrition of plants when grown in soils. Environmental and Experimental Botany, 2008, 64(3): 239-249. [15] Shakhatreh Y, Haddad N, Alrababah M, et al . Phenotypic diversity in wild barley ( Hordeum vulgare L. ssp. spontaneum (C. Koch) Thell.) accessions collected in Jordan. Genetic Resources and Crop Evolution, 2010, 57(1): 131-146. [16] Zhang X Z, Yang X B, Li T X, et al . Genotype difference in nitrogen uptake and utilization of wild barley. Journal of Nuclear Agricultural Sciences, 2011, 25(6): 1261-1267. [17] Tyagi K, Park M R, Lee H J, et al . Fertile crescent region as source of drought tolerance at early stage of plant growth of wild barley ( Hordeum vulgare L. ssp. spontaneum ). Pakistan Journal of Botany, 2011, 43(1): 475-486. [18] Chen G, Krugman T, Fahima T, et al . Chromosomal regions controlling seedling drought resistance in Israeli wild barley, Hordeum spontaneum C. Koch. Genetic Resources and Crop Evolution, 2010, 57(1): 85-99. [19] Nevo E. Ecological genomics of natural plant populations: the Israeli perspective. Plant Genomics, Methods in Molecular Biology, 2009, 513: 321-344. [20] Nevo E, Chen G. Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant, Cell & Environment, 2010, 33(4): 670-685. [21] Yan J, Wang Y, Chen J P. Caryopsis dormancy patterns of wild barley ( Hordeum spontaneum ) and its association with agronomic traits and ecogeographical parameters. Plant Science Journal, 2011, 29(3): 352-361. [22] Chen G, Pourkheirandish M, Sameri M, et al . Genetic targeting of candidate genes for drought sensitive gene eibi1 of wild barley ( Hordeum spontaneum ). Breeding Science, 2009, 59(5): 637-644. [23] Xu J, Zhang X Z, Li T X, et al . Screening of wild barley genotypes with high phosphorus use efficiency and their rhizosphere soil inorganic phosphorus fractions. Chinese Journal of Applied Ecology, 2013, 24(10): 2821-2830. [24] Bao S D. Analytical Methods of Soil and Agrochemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000. [25] Yang X B. Study on screening for P-efficient wheat cultivar and relevant physiological characteristics[D]. Ya’an: Sichuan Agricultural University, 2011. [26] Han S F, Deng R L, Xu H R, et al . Characteristics of phosphorus uptake in different rice ( Oryza sativa ) cultivars under phosphorus stress condition. Journal of Plant Genetic Resources, 2007, 8(2): 223-227. [27] Li B X, Guo C J, Wang B, et al . Acquisition and utilization characteristics of phosphorus in hybrid F 1 and parents with different P efficiencies under phosphorus deficient condition. Acta Agronomica Sinica, 2006, 32(2): 267-272. [28] George T S, Brown L K, Newton A C, et al . Impact of soil tillage on the robustness of the genetic component of variation in phosphorus (P) use efficiency in barley ( Hordeum vulgare L.). Plant and Soil, 2011, 339(1-2): 113-123. [29] Yang X B, Zhang X Z, Li T X, et al . Differences in phosphorus utilization efficiency among wheat cultivars. Chinese Journal of Applied Ecology, 2012, 23(1): 60-66. [30] Pan X W, Li W B, Zhang Q Y, et al . Assessment on phosphorus efficiency characteristics of soybean genotypes in phosphorus-deficient soils. Agricultural Sciences in China, 2008, 7(8): 958-969. [31] Wang Q R, Li J Y, Li Z S, et al . Screening chinese wheat germplasm for phosphorus efficiency in calcareous soils. Journal of Plant Nutrition, 2005, 28(3): 498-505. [32] Lambers H, Shane M W, Cramer M D, et al . Root structure and functioning for efficient acquisition of phosphorus: Matching morphological and physiological traits. Annals of Botany, 2006, 98(4): 693-713. [33] Cui H, Li L Y, Xie X L, et al . Differences in root architecture of several Stylosanthes genotypes and their phosphorus efficiency. Acta Prataculturae Sinica, 2013, 22(5): 265-271. [34] Pearse S J, Veneklaas E J, Cawthray G, et al . Triticum aestivum shows a greater biomass response to a supply of aluminium phosphate than Lupinus albus , despite releasing fewer carboxylates into the rhizosphere. New Phytologist, 2006, 169(3): 515-524. [35] Hinsinger P, Betencourt E, Bernard L, et al . P for two, sharing a scarce resource: soil phosphorus acquisition in the rhizosphere of intercropped species. Plant Physiology, 2011, 156(3): 1078-1086. [36] Liang H L, Shi L, Xu F S, et al . The difference in uptake and utilization of soil insoluble phosphorous for various P efficient genotypes in Brassica napus . Chinese Journal of Oil Crop Sciences, 2007, 29(3): 297-301. [37] Chen L, Wang S F, Liu R L, et al . Changes of root morphology and rhizosphere processes of wheat under different phosphate supply. Plant Nutrition and Fertilizer Science, 2012, 18(2): 324-331. [38] Gao W X, Zhang L L, Ren W, et al . The changeable characteristics of phosphorus content in rhizosphere soils in different years alfalfa pastures in Hexi Corridor saline soil. Pratacultural Science, 2008, 25(7): 54-58. [39] Xue Z Y, Zhou Z Y, Zhan Y Y, et al . Changing characteristics of phosphorus in the rhizosphere soil of the xeromorphic shrubs in arid deserts. Acta Ecologica Sinica, 2010, 30(2): 341-349. [40] Liu X, Yan H L, Zhang S X. Differences of rhizosphere characteristics of two P-efficient wheat genotypes on two calcareous soils. Soil and Fertilizer Sciences in China, 2009, (4): 37-39. [41] Zhang H W, Huang Y, Ye X S, et al . Genotypic differences in phosphorus acquisition and the rhizosphere properties of Brassica napus in response to low phosphorus stress. Plant and Soil, 2009, 320(1-2): 91-102. [42] Yu Z G, Zhang S X. Root configuration and rhizosphere characteristics of different maize inbred lines with contrasting P efficiency. Plant Nutrition and Fertilizer Science, 2008, 14(6): 1227-1231. [43] Maseko S T, Dakora F D. Rhizosphere acid and alkaline phosphatase activity as a marker of P nutrition in nodulated Cyclopia and Aspalathus species in the Cape fynbos of South Africa. South African Journal of Botany, 2013, 89: 289-295. [44] Li Y F, Luo A C, Wei X H, et al . Changes in phosphorus fractions, pH, and phosphatase activity in rhizosphere of two rice genotypes. Pedosphere, 2008, 18(6): 785-794. [45] Zhou X B, Huang J G, Zhou Y X, et al . The mechanism on rhizosphere phosphorus activation of two wheat genotypes with different phosphorus efficiency. African Journal of Biotechnology, 2012, 11(7): 1579-1591. [46] Yan K, Wang C Q, Li H X, et al . Effects of phosphorus level on the activity of acid phosphatase in roots of hybrid rice and its parents. Chinese Journal of Rice Science, 2010, 24(1): 43-48. [47] Wasaki J, Maruyama H, Tanaka M, et al . Overexpression of the LASAP 2 gene for secretory acid phosphatase in white lupin improves the phosphorus uptake and growth of tobacco plants. Soil Science and Plant Nutrition, 2009, 55(1): 107-113. [48] Yan X L, Liao H, Trull M C, et al . Induction of a major leaf acid phosphatase does not confer adaptation to low phosphorus availability in common bean. Plant Physiology, 2001, 125(4): 1901-1911. [49] Zhang H W, Huang Y, Ye X S, et al . Analysis of the contribution of acid phosphatase to P efficiency in Brassica napus under low phosphorus condition. Scientia Sinica: Life Sciences, 2010, 40(5): 418-427. [1] 滕泽琴, 李旭东, 韩会阁, 等. 土地利用方式对陇中黄土高原土壤磷组分的影响. 草业学报, 2013, 22(2): 30-37. [3] 张福锁, 王激清, 张卫峰, 等. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 9(5): 915-924. [4] 张锡洲, 阳显斌, 李廷轩, 等. 不同磷效率小麦对磷的吸收及根际土壤磷组分特征差异. 中国农业科学, 2012, 45(15): 3083-3092. [5] 刘霜, 李廷轩, 戢林, 等. 不同磷处理下两种生态型粗齿冷水花的富磷特征及根系形态差异. 草业学报, 2013, 22(3): 211-217. [7] 吕阳, 程文达, 黄珂, 等. 低磷胁迫下箭筈豌豆和毛叶苕子根际过程的差异比较. 植物营养与肥料学报, 2011, 17(3): 674-679. [8] 李永夫, 罗安程, 吴良欢, 等. 两个基因型水稻利用有机磷的差异及其与根系分泌酸性磷酸酶活性的关系. 应用生态学报, 2009, 20(5): 1072-1078. [11] 王文华, 周鑫斌, 周永祥, 等. 不同磷效率油菜根际土壤磷活化机理研究. 植物营养与肥料学报, 2011, 17(6): 1379-1387. [16] 张锡洲, 阳显斌, 李廷轩, 等. 野生大麦氮素吸收利用的基因型差异. 核农学报, 2011, 25(6): 1261-1267. [21] 严俊, 王莹, 程剑平. 野生二棱大麦种子休眠型态与农艺性状及生态地理因素相关性研究. 植物科学学报, 2011, 29(3): 352-361. [23] 徐静, 张锡洲, 李廷轩, 等. 磷高效利用野生大麦基因型筛选及其根际土壤无机磷组分特征. 应用生态学报, 2013, 24(10): 2821-2830. [24] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000. [25] 阳显斌. 小麦磷高效利用品种筛选及其生理特征研究[D]. 雅安: 四川农业大学, 2011. [26] 韩胜芳, 邓若磊, 徐海荣, 等. 缺磷条件下不同水稻品种磷素吸收特性的研究. 植物遗传资源学报, 2007, 8(2): 223-227. [27] 李宾兴, 郭程瑾, 王斌, 等. 缺磷胁迫下不同磷效率小麦品种及其杂种F 1 的磷吸收利用特性. 作物学报, 2006, 32(2): 267-272. [29] 阳显斌, 张锡洲, 李廷轩, 等. 小麦磷素利用效率的品种差异. 应用生态学报, 2012, 23(1): 60-66. [33] 崔航, 李立颖, 谢小林, 等. 不同基因型柱花草的根系构型差异及其磷效率. 草业学报, 2013, 22(5): 265-271. [36] 梁宏玲, 石磊, 徐芳森, 等. 甘蓝型油菜不同磷效率基因型对土壤难溶性磷吸收利用的差异. 中国油料作物学报, 2007, 29(3): 297-301. [37] 陈磊, 王盛锋, 刘荣乐, 等. 不同磷供应水平下小麦根系形态及根际过程的变化特征. 植物营养与肥料学报, 2012, 18(2): 324-331. [38] 高文星, 张莉丽, 任伟, 等. 河西走廊盐渍土不同种植年限苜蓿根际磷含量变异特征. 草业科学, 2008, 25(7): 54-58. [39] 薛梓瑜, 周志宇, 詹媛媛, 等. 干旱荒漠区旱生灌木根际土壤磷变化特征. 生态学报, 2010, 30(2): 341-349. [40] 刘璇, 闫海丽, 张淑香. 石灰性土壤上两种磷效率小麦根际特征差异. 中国土壤与肥料, 2009, (4): 37-39. [42] 于兆国, 张淑香. 不同磷效率玉米自交系根系形态与根际特征的差异. 植物营养与肥料学报, 2008, 14(6): 1227-1231. [46] 严宽, 王昌全, 李焕秀, 等. 磷水平对杂交水稻及其亲本根系酸性磷酸酶活性的影响. 中国水稻科学, 2010, 24(1): 43-48. [49] 张海伟, 黄宇, 叶祥盛, 等. 低磷胁迫下甘蓝型油菜酸性磷酸酶对磷效率的贡献分析. 中国科学: 生命科学, 2010, 40(5): 418-427. |