[1] Kadib A A. Function for Sand Movement by Wind[M]. Berkeley: PN, 1965. [2] Yu Y J, Xin Y Y, Liu J Q. Effects of wind and wind-sand current on the physiological status of different sand-fixing plants. Acta Botanica Sinica, 1998, 40(10): 962-968. [3] Whitehead F H. Experimental studies on the effect of wind on plant growth and development: Helianthus annuus . New Phytologist, 1962, 61(1): 59-62. [4] Yu Y J, Shi P J, He L P, et al . Research on the effects of wind-sand current on the plant growth. Advance in Earth Sciences, 2002, 17(2): 262-267. [5] Li F R, Zhang H, Zhang T H. Variations of sand transportation rates in sandy grasslands along a desertification gradient in northern China. Catena, 2003, 53: 255-272. [6] Paul P H, Rebecca L. Simpson variable vegetation cover and episodic sand movement on longitudinal desert sand dunes. Geomorphology, 2006, 81(3-4): 276-291. [7] Monier M, Abd E G, Wafaa M A. Soil-vegetation relationships in a coastal desert plain of southern Sinai, Egypt. Journal of Arid Environments, 2003, 55(4): 607-628. [8] Liu Y, Schieving F, Stuefer J F, et al . The effects of mechanical stress and spectral shading on the growth and allocation of ten genotypes of a stoloniferous plant. Annals of Botany, 2007, 99(1): 121-130. [9] Zhao H L, He Y H, Yue G Y, et al . Effects of wind blow and sand burial on the seedling growth and photosynthetic and transpiration rates of desert plants. Chinese Journal of Ecology, 2010, 29(3): 413-419. [10] Qu H, Zhao X Y, Yue G Y, et al . physiological response to wind of some common plants in Horqin Sand Land. Journal of Desert Research, 2009, 29(4): 668-673. [11] Wang Y H, He W M, Yu F H, et al . Advances in the responses of plants to wind-induced mechanical stimulation. Acta Ecologica Sinica, 2010, 30(3): 0794-0800. [12] Yu Y J, Shi P J, Lu C X, et al . Response of the ecophysiological characteristics of some plants under blown sand. Acta Phytoecologica Sinica, 2003, 27(1): 53-58. [13] Zhao X L, Li W Y. Pinus sylvestnis var. mongolica [M]. Beijing: Agricultural Press, 1963. [14] Li H Y, Liu M G. The development status of Pinus sylvestris var. mongolica sand-fixation plantations. Journal of Liaoning Forestry Science& Technology, 2003, (5): 35-39. [15] Jiao S R. Review of afforestation technology of Pinus sylvestris var. mongolica . Protection Forest Science and Technology, 2010, (6): 52-54. [16] Wu C R, Jin H X, Yan Z Z, et al . Average photosynthesis variation of Pinus sylvesiris during a day in the arid and desert area. Journal of Arid Land Resources and Environment, 2003, 17(6): 144-146. [17] Zhu J J, Kang H Z, Li Z H. Impact of water stress on survival and photosynthesis of Mongolian pine seedlings on sandy land. Acta Ecologica Sinica, 2005, 25(10): 2527-2533. [18] Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 1982, 33: 317-345. [19] Russell G, Grace J. The effect of wind on grass v: Leaf extension, diffusive conductance, and photosynthesis in the wind tunnel. Journal of Experimental Botany, 1978, 29(5): 1249-1258. [20] Chen G Y, Chen J, Xu D Q. Thinking about the Relationship between net photosynthetic rate and intercellular CO 2 concentration. Plant Physiology Communications, 2010, 46(1): 64-66. [21] Telewski F W, Jaffe M J. Thigmom ophogenesis: Field and laboratory studies of Abiesfra seriin response to wind or mechanical perturbation. Physiologia Plantarum, 1986, 66(2): 211-218. [22] Mitchell C A. Recent advances in plant response to mechanical stress: Theory and Application. Hortscience, 1996, 31(1): 31-35. [23] Ennos A R. Wind as an ecological factor. Trends in Ecology & Evolution, 1997, 12(3): 108-111. [24] Grace J, Malcolm D C, Bradbury I K. The effect of wind and humidity on leaf diffusive resistance in Sitka spruce seedlings. Journal of Applied Ecology, 1975, 12(3): 931-940. [25] Grace J. Plant Response to Wind[M]. London: Academic Press, 1977. [26] Wang B X, Xu X, Li X F. Physiological and eco-physiological responses of Humulus scandens seedlings to chromium stress. Acta Prataculturae Sinica, 2014, 23(4): 181-189. [2] 于云江, 辛越勇, 刘家琼. 风和风沙流对不同固沙植物生理状况的影响. 植物学报, 1998, 40(10): 962-968. [4] 于云江, 史培军, 贺丽萍, 等. 风沙流对植物生长影响的研究. 地球科学进展, 2002, 17(2): 262-267. [9] 赵哈林, 何玉慧, 岳广阳, 等. 风吹、沙埋对沙地植物幼苗生长和光合蒸腾特性的影响. 生态学杂志, 2010, 29(3): 413-419. [10] 曲浩, 赵学勇, 岳广阳, 等. 科尔沁沙地几种常见植物对风胁迫的生理响应. 中国沙漠, 2009, 29(4): 668-673. [11] 王艳红, 何维明, 于飞海, 等. 植物响应对风致机械刺激研究进展. 生态学报, 2010, 30(3): 0794-0800. [12] 于云江, 史培军, 鲁春霞, 等. 不同风沙条件对几种植物生态生理特征的影响. 植物生态学报, 2003, 27(1): 53-58. [13] 赵兴梁, 李万英. 樟子松[M]. 北京: 农业出版社, 1963. [14] 李宏印, 刘明国. 樟子松人工固沙林发展现状. 辽宁林业科技, 2003, (5): 35-39. [15] 焦树仁. 樟子松沙地造林技术综述. 防护林科技, 2010, (6): 52-54. [16] 吴春荣, 金红喜, 严子柱, 等. 樟子松在西北干旱沙区的光合日变化特征. 干旱区资源与环境, 2003, 17(6): 144-146. [17] 朱教君, 康宏樟, 李智辉. 水分胁迫对不同年龄沙地樟子松幼苗存活与光合特性影响. 生态学报, 2005, 25(10): 2527-2533. [20] 陈根云, 陈娟, 许大全. 关于净光合速率和胞CO 2 浓度关系的思考. 植物生理学通讯, 2010, 46(1): 64-66. [26] 王碧霞, 胥晓, 李霄锋. 葎草幼苗光合生理特性对铬胁迫的响应. 草业学报, 2014, 23(4): 181-189. |