Acta Prataculturae Sinica ›› 2015, Vol. 24 ›› Issue (11): 195-205.DOI: 10.11686/cyxb2014489
Previous Articles Next Articles
LI Yue, WAN Li-Qiang*, LI Xiang-Lin*
Received:
2014-11-28
Online:
2015-11-20
Published:
2015-11-20
LI Yue, WAN Li-Qiang, LI Xiang-Lin. Progress in understanding relationships between the physiological mechanisms of endogenous abscisic acid and drought resistance of alfalfa[J]. Acta Prataculturae Sinica, 2015, 24(11): 195-205.
[1] Liu Z L, Cheng D. Plant drought-resistant physiology research progress and breeding. Chinese Agricultural Science Bulletin, 2011, 27(24): 249-252. [2] Chen Y L, Cao M. The relationship among ABA, stomatal conductance and leaf growth under drought condition. Plant Physiology Communications, 1999, 35(5): 398-403. [3] de Souza T C, Magalhaes P C, de Castro E M, et al . The influence of ABA on water relation, photosynthesis parameters, and chlorophyll fluorescence under drought conditions in two maize hybrids with contrasting drought resistance. Acta Physiologiae Plantarum, 2013, 35(2): 515-527. [4] Ye N, Jia L, Zhang J. ABA signal in rice under stress conditions. Rice, 2012, 5: 1-9. [5] Mahdieh M, Mostajeran A. Abscisic acid regulates root hydraulic conductance via aquaporin expression modulation in Nicotiana tabacum . Journal of Plant Physiology, 2009, 166(18): 1993-2003. [6] Ghassemian M, Lutes J, Chang H, et al . Abscisic acid-induced modulation of metabolic and redox control pathways in Arabidopsis thaliana . Phytochemistry, 2008, 69(17): 2899-2911. [7] Cao H, Zhang H L, Gai Q H, et al . Test and comprehensive assessment on the performance of 22 alfalfa varieties. Acta Prataculturae Sinica, 2011, 20(6): 219-229. [8] Schubert S, Serraj R, Plies-Balzer E, et al . Effect of drought stress on growth, sugar concentrations and amino acid accumulation in N 2 -fixing alfalfa ( Medicago sativa ). Journal of Plant Physiology, 1995, 146(4): 541-546. [9] Antolín M C, Muro I, Sánchez-Díaz M. Application of sewage sludge improves growth, photosynthesis and antioxidant activities of nodulated alfalfa plants under drought conditions. Environmental and Experimental Botany, 2010, 68(1): 75-82. [10] Sgherri C L M, Salvateci P, Menconi M, et al . Interaction between drought and elevated CO 2 in the response of alfalfa plants to oxidative stress. Journal of Plant Physiology, 2000, 156(3): 360-366. [11] Sgherri C L M, Quartacci M F, Menconi M, et al . Interactions between drought and elevated CO 2 on alfalfa plants. Journal of Plant Physiology, 1998, 152(1): 118-124. [12] Han R H, Lu X S, Gao G J, et al . Analysis of the principal components and the subordinate function of alfalfa drought resistance. Acta Agrestia Sinica, 2006, 14(2): 142-146. [13] Blackman P G, Davies W J. Root-to-shoot communication in maize plants of the effects of soil drying. Journal of Experimental Botany, 1985, 36(1): 39-48. [14] Liang J, Zhang J, Wong M H.How do roots control xylem sap ABA concentration in response to soil drying. Plant Cell Physiology, 1997, 38(1): 10-16. [15] Jackson G E, Irvine J, Grace J, et al . Abscisic acid concentrations and fluxes in drought conifer samplings. Plant, Cell & Environment, 1995, 18(1): 13-22. [16] Davies W J, Zhang J. Root signals and the regulation of growth and development of plants in drying soil. Annual Review of Plant Physiology and Plant Molecular Biology, 1991, 42: 55-76. [17] Sauter A, Davies W J, Hartung W. The long-distance abscisic acid signal in the droughted plant: the fate of the hormone on its way from root to shoot. Journal of Experimental Botany, 2001, 52(363): 1991-1997. [18] Endo A, Sawada Y, Takahashi H, et al . Drought induction of Arabidopsis 9-cis-epoxycarotenoid dioxygenase occurs in vascular parenchyma cells. Plant Physiology, 2008, 147(4): 1984-1993. [19] Hu B, Xiao S N, Lü Y. Distribution of ABA and AhNCED1 in peanut leaves of different drought resistant cultivars subjected to drought stress. Chinese Journal of Cell Biology, 2012, 34(10): 992-997. [20] De Diego N, Rodríguez J L, Dodd I C, et al . Immunolocalization of IAA and ABA in roots and needles of radiata pine ( Pinus radiata ) during drought and rewatering. Tree Physiology, 2013, 33(5): 537-549. [21] Ikegami K, Okamoto M, Seo M, et al . Activation of abscisic acid biosynthesis in the leaves of Arabidopsis thaliana in response to water deficit. Journal of Plant Research, 2009, 122(2): 235-243. [22] Pastor A, Lopez-Carbonell M, Alegre L. Abscisic acid immunolocalization and ultrastructural changes in water-stressed lavender ( Lavandula stoechas L.) plants. Physiologia Plantarum, 1999, 105(2): 272-279. [23] Van Rensburg L, Krüger H, Breytenbach J. Immunogold localization and quantification of cellular and subcellular abscisic acid, prior to and during drought stress. Biotechnic & Histochemistry, 1996, 71(1): 38-43. [24] Nambara E, Marion-Poll A. Abscisic acid biosynthesis and catabolism. Annual Review Plant Biology, 2005, 56: 165-185. [25] Audran C, Liotenberg S, Gonneau M, et al . Localisation and expression of zeaxanthin epoxidase mRNA in Arabidopsis in response to drought stress and during seed development. Australia Journal of Plant Physiology, 2001, 28(12): 1161-1173. [26] Marin E, Nussaume L, Quesada A, et al . Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia , a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana . Journal of Experimental Botany, 1996, 15(10): 2331-2342. [27] Audran C, Borel C, Frey A, et al . Expression studies of the zeaxanthin epoxidase gene in Nicotiana plumbaginifolia . Plant Physiology, 1998, 118(3): 1021-1028. [28] Agrawal G K, Yamazaki M, Kobayashi M, et al . Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion. Tagging of a zeaxanthin epoxidase gene and a novel OsTATC gene. Plant Physiology, 2001, 125(3): 1248-1257. [29] Schwartz S H, Tan B C, Gage D A, et al . Specific oxidative cleavage of carotenoids by VP14 of maize. Science, 1997, 276: 1872-1874. [30] Thompson A J, Jackson A C, Symonds R C, et al . Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid. Plant Journal, 2000, 23(3): 363-374. [31] Burbidge A, Grieve T M, Jackson A, et al . Characterization of the ABA-deficient tomato mutant notabilis and its relationship with maize Vp14. Plant Journal, 1999, 17(4): 427-431. [32] Iuchi S, Kobayashi M, Taji T, et al . Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis . Plant Journal, 2001, 27(4): 325-333. [33] Gonz'alez-Guzm'an M, Apostolova N, Bell'es J M, et al . The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell, 2002, 14(8): 1833-1846. [34] Groot S P C, Van Yperen I, Karssen C M. Strongly reduced levels of endogenous abscisic acid in developing seeds of the tomato mutant sitiens do not influence in vivo accumulation of dry matter and storage proteins. Plant Physiology, 1991, 81(1): 73-78. [35] Koiwai H, Nakaminami K, Seo M, et al . Tissue specific localization of an abscisic acid biosynthetic enzyme, AAO3, in Arabidopsis . Plant Physiology, 2004, 134(4): 1697-1707. [36] Seo M, Aoki H, Koiwai H, et al . Comparative studies on the Arabidopsis aldehyde oxidase (AAO) gene family revealed a major role of AAO3 in ABA biosynthesis in seeds. Plant Cell Physiology, 2004, 45(11): 1694-1703. [37] Seo M, Peeters A J M, Koiwai H, et al . The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proceedings of the National Academy Sciences of United States of America, 2000, 97(23): 12908-12913. [38] Sagi M, Scazzocchio C, Fluhr R. The absence of molybdenum cofactor sulfuration is the primary cause of the flacca phenotype in tomato plants. Plant Journal, 2002, 31(3): 305-317. [39] Bittner F, Oreb M, Mendel R R. ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana . Journal of Biological Chemistry, 2001, 276(44): 40381-40384. [40] Qin X, Zeevaart J A D. The 9-cisepoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proceedings of the National Academy Sciences of United States of America, 1999, 96(26): 15354-15361. [41] Meier S, Tzfadia O, Vallabhaneni R, et al . A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana . BMC Systems Biology, 2011, 5(77): 1-19. [42] Ruiz-Sola M A, Vicent A, Aurelio G, et al . A Root specific induction of carotenoid biosynthesis contributes to ABA production upon salt stress in Arabidopsis . PLoS ONE, 2014, 9(3): e90765. [43] Cheng W H, Endo A, Zhou L, et al . A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell, 2002, 14: 2723-2743. [44] Xu Z J, Nakajima M, Suzuki Y, et al . Cloning and characterization of the abscisic acid-specific glucosyltransferase gene from adzuki bean seedlings. Plant Physiology, 2002, 129: 1285-1295. [45] Zhu J K. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 2002, 53: 247-273. [46] Krochko J E, Abrams G D, Loewen M K, et al . (+)-abscisic acid 8'-hydroxylase is a cytochrome P450 monooxygenase. Plant Physiology, 1998, 118(3): 849-860. [47] Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Review of Plant Biology, 2006, 57: 781-803. [48] Degenhardt B, Gimmler H, Hose E, et al . Effect of alkaline and saline substrates on ABA contents, -distribution and -transport in plant roots. Plant and Soil, 2000, 225: 83-94. [49] Chater C C C, Oliver J, Casson S, et al . Putting the brakes on: abscisic acid as a central environmental regulator of stomatal development. New Phytologist, 2014, 202(2): 376-391. [50] Yusuke M, Noguchi K, Kojima M, et al . Mesophyll conductance decreases in the wild type but not in an ABA-deficient mutant (aba1) of Nicotiana plumbaginifolia under drought conditions. Plant, Cell and Environment, 2015, 28(3): 388-398. [51] Shen Y Y, Wang X F, Wu F Q, et al . The Mg-chelatase H subunit is an abscisic acid receptor. Nature, 2006, 443(7113): 823-826. [52] Tsuzuki T, Takahashi K, Inoue S, et al . Mg-chelatase H subunit affects ABA signaling in stomatal guard cells, but is not an ABA receptor in Arabidopsis thaliana . Journal of Plant Research, 2011, 124(4): 527-538. [53] Müller A H, Hansson M. The barley magnesium chelatase 150-kd subunit is not an abscisic acid receptor. Plant Physiology, 2009, 150(1): 157-166. [54] Liu X, Yue Y, Li B, et al . A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science, 2007, 315(5819): 1712-1716. [55] Pandey S, Nelson D C, Assmann S M. Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis . Cell, 2009, 136(1): 136-148. [56] Johnston C A, Temple B R, Chen J G, et al . Comment on “A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid”. Science, 2007, 318(5852): 914. [57] Soon F F, Ng L M, Zhou X E, et al . Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases. Science, 2012, 335(6064): 85-87. [58] Fujii H, Chinnusamy V, Rodrigues A, et al . In vitro reconstitution of an abscisic acid signaling pathway. Nature, 2009, 462(7273): 660-664. [59] Yoshida R, Umezawa T, Mizoguchi T, et al . The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis . The Journal of Biological Chemistry, 2006, 281(8): 5310-5318. [60] Yang L, Ji W, Gao P, et al . GsAPK, an ABA-activated and calcium-independent SnRK2-type kinase from G. soja , mediates the regulation of plant tolerance to salinity and ABA stress. PLoS ONE, 2012, 7(3): e33838. [61] Biswa R A, Byeong W J, Zhang W, et al . Open Stomata 1 (OST1) is limiting in abscisic acid responses of Arabidopsis guard cells. New Phytologist, 2013, 200(4): 1049-1063. [62] Dennis I, Patrick M, Jennifer B, et al . Open stomata 1 (OST1) kinase controls R-type anion channel QUAC1 in Arabidopsis guard cells. The Plant Journal, 2013, 74(3): 372-382. [63] Allen G J, Chu S P, Schumacher K, et al . Alteration of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant. Science, 2000, 289(5488): 2338-2342. [64] Hamilton D W, Hills A, Kohler B, et al . Ca 2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid. Proceedings of the National Academy Sciences of United States of America, 2000, 97(9): 4967-4972. [65] Lee Y, Choi Y B, Sub C S, et al . Abscisic acid-induced phosphoinositide turnover in guard cell protoplasts of Vicia faba . Plant Physiology, 1996, 110: 987-996. [66] Leckie C P, McAinsh M R, Allen G J, et al . Abscisic acid-induced stomatal closure mediated by cyclic ADP-ribose. Proceedings of the National Academy Sciences of United States of America, 1998, 95: 15837-15842. [67] Leung J, Giraudat J. Abscisic acid signals transduction. Annual Review Physiology and Plant Molecular Biology, 1998, 49: 199-222. [68] McAinsh M R, Clayton H, Mansgield T A, et al . Changes in stomatal behavior and cytosolic free calcium in response to oxidative stress. Plant Physiology, 1996, 111: 1031-1042. [69] Miao Y C, Song C P, Dong F C, et al . ABA-induced hydrogen peroxide generation in guard cells of Vicia faba . Acta Phytophysiologica Sinica, 2000, 26(1): 53-58. [70] Mustilli A C, Merlot S, Vavasseur A, et al . Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell, 2002, 14(12): 3089-3099. [71] Wendehenne D, Durner J, Klessig D F. Nitric oxide: a new player in plant signaling and defense responses. Current Opinion Plant Biology, 2004, 7: 449-455. [72] Bright J, Desikan R, Hancock J T, et al . ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H 2 O 2 synthesis. Plant Journal, 2006, 45: 113-122. [73] Yan J P, Tsuichihara N, Etoh T, et al . Reactive oxygen species and nitric oxide are involved in ABA inhibition of stomatal opening. Plant, Cell and Environment, 2007, 30: 1320-1325. [74] Zhang L, Zhao X, Wang Y J, et al . Crosstalk of NO with Ca 2+ in stomatal movement in Vicia faba guard cells. Acta Agronomica Sinica, 2009, 35(8): 1491-1499. [75] Campbell J L, Klueva N Y, Zheng H G, et al . Cloning of new members of heat shock protein HSP 101 gene family in wheat [ Triticum aestivum (L.) Moench] inducible by heat, dehydration, and ABA. Biochimica et Biophysica Acta-gene Structure and Expression, 2001, 1517: 270-277. [76] Yoshiba Y, Kiyosue T, Katagiri T, et al . Correlation between the induction of a gene for 1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant Journal, 1995, 7: 751-760. [77] Seki M. Monitoring the expression pattern of around 7000 Arabidopsis genes under ABA treatments using a full length cDNA microarray. Functional & Integrative Genomics, 2002, 2(6): 282-291. [78] Zhu X Q, Zhang X Y, Shi S L, et al . Comparison on the root drought resistance of four alfalfa cultivars under drought stress. Journal of Gansu Agricultural University, 2012, 47(1): 103-107. [79] Han R H, Gao G J, Zhang Y G. Research progress on Medicago adaptation under drought stress. Anhui Agricultural Science Bulletin, 2009, 15(18): 27-29. [80] Han D L, Wang Y R. Adaptability of Medicago sativa under water stress. Acta Prataculturae Sinica, 2005, 14(6): 7-13. [81] Xu X N, Yi J, Yu L Q, et al . Advances on drought resistance of alfalfa. Chinese Agricultural Science Bulletin, 2009, 25(21): 180-184. [82] Mckersie B D, Bowley S R, Harjanto E, et al . Water-deficit tolerance and field performance of transgenic alfalfa over expressing superoxide dismutase. Plant Physiology, 1996, 111(4): 1117-1181. [83] Mckersie B D, Chen Y, Beus M, et al . Super oxide dismutase enhances tolerance of freezing stress in transgenic alfalfa ( Medicago sativa L.). Plant Physiology, 1993, 103(4): 1155-1163. [84] Ren M, He J H. Changes of ABA metabolism in leaves and roots of alfalfa under natural drought stress. Journal of Anhui Agricultural Science, 2010, 38(4):1771-1772. [85] Han R H, Zhang Y G, Tian H, et al . Study on changes of endogenous hormones in the leaves of alfalfa under drought stress. Acta Agriculturae Boreali-Sinica, 2008, 23(3): 81-84. [86] Ivanova A, Djilianov D, Van Onckelen H, et al . Abscisic acid changes in osmotic stressed leaves of alfalfa genotypes varying in drought tolerance. Journal of Plant Physiology, 1997, 150(1-2): 224-227. [87] Li Y, Wang Z, Liu G B, et al . Study on endogenesis hormones and anatomical structures of Medicago glutinosa under drought stress. Acta Agriculturae Boreali-sinica, 2010, 25(6): 211-216. [88] Avice J C, Ourry A, Lemaire G, et al . Root protein and vegetative storage proteins are key organic nutrients for alfalfa shoot regrowth. Crop Science, 1997, 37: 1187-1193. [89] Erice G, Irigoyen J J, Sánchez-Díaz M, et al . Effect of drought, elevated CO 2 and temperature on accumulation of N and vegetative storage proteins (VSP) in taproots of nodulated alfalfa before and after cutting. Plant Science, 2007, 172: 903-912. [90] Avice J C, Le Dily F, Goulas E, et al . Vegetative storage proteins in overwintering storage organs of forage legumes: roles and regulation. Canada Journal of Botany, 2003, 81: 1198-1212. [91] Zhang J Y, Maria H C C, Torres-Jerez I, et al . Global reprogramming of transcription and metabolism in Medicago truncatula during progressive drought and after rewatering. Plant, Cell and Environment, 2014, 37: 2553-2576. [92] Planchet E, Verdu I, Delahaie J, et al . Abscisic acid-induced nitric oxide and proline accumulation in independent pathways under water-deficit stress during seedling establishment in Medicago truncatula . Journal of Experimental Botany, 2014, 65(8): 2161-2170. [93] Planchet E, Rannou O, Ricoult C, et al . Nitrogen metabolism responses to water deficit act through both abscisic acid (ABA)-dependent and independent pathways in Medicago truncatula during post-germination. Journal of Experimental Botany, 2011, 62: 605-615. [94] Luo M, Lin L H, Hill R D, et al . Primary structure of an environmental stress and abscisic acid-inducible alfalfa protein. Plant Molecular Biology, 1991, 17(6): 1267-1269. [95] Luo M, Liu J H, Mohapatra S, et al . Characterization of a gene family encoding abscisic acid and environmental stress-inducible proteins of alfalfa. Journal of Biological Chemistry, 1992, 267(22): 15367-15374. [96] Kovács I, Ayaydin F, Oberschall A, et al . Immunolocalization of a novel annexin-like protein encoded by a stress and abscisic acid responsive gene in alfalfa. The Plant Journal, 1998, 15(2): 185-197. [1] 刘志玲, 程丹. 植物抗旱生理研究进展与育种. 中国农学通报, 2011, 27(24): 249-252. [2] 陈玉玲, 曹敏. 干旱条件下ABA与气孔导度和叶片生长的关系. 植物生理学通讯, 1999, 35(5): 398-403. [7] 曹宏, 章会玲, 盖琼辉, 等. 22个紫花苜蓿品种的引种试验和生产性能综合评价. 草业学报, 2011, 20(6): 219-229. [12] 韩瑞宏, 卢欣石, 高桂娟, 等. 紫花苜蓿抗旱性主成分及隶属函数分析. 草地学报, 2006, 14(2): 142-146. [19] 胡博, 肖素妮, 吕滟. 不同花生品种响应干旱胁迫后叶片内ABA与AhNCED1的分布. 中国细胞生物学学报, 2012, 34(10): 992-997. [69] 苗雨晨, 宋纯鹏, 董发才, 等. ABA诱导蚕豆气孔保卫细胞H 2 O 2 的产生. 植物生理学报, 2000, 26(1): 53-58. [74] 张霖, 赵翔, 王亚静, 等. NO与Ca 2+ 对蚕豆保卫细胞气孔运动的互作调控. 作物学报, 2009, 35(8): 1491-1499. [78] 朱新强, 张新颖, 师尚礼, 等. 干旱胁迫下4个苜蓿品种根系抗旱性的比较. 甘肃农业大学学报, 2012, 47(1): 103-107. [79] 韩瑞宏, 高桂娟, 张亚光. 干旱胁迫下苜蓿适应性研究进展. 安徽农学通报, 2009, 15(18): 27-29. [80] 韩德梁, 王彦荣. 紫花苜蓿对干旱胁迫适应性的研究进展. 草业学报, 2005, 14(6): 7-13. [81] 徐向南, 易津, 于林清, 等. 紫花苜蓿抗旱性研究进展. 中国农学通报, 2009, 25(21): 180-184. [84] 任敏, 何金环. 自然干旱胁迫下紫花苜蓿叶片和根部ABA的代谢变化. 安徽农业科学, 2010, 38(4): 1771-1772. [85] 韩瑞宏, 张亚光, 田华, 等. 干旱胁迫下紫花苜蓿叶片几种内源激素的变化. 华北农学报, 2008, 23(03): 81-84. [87] 李源, 王赞, 刘贵波, 等. 干旱胁迫下胶质苜蓿内源激素及解剖结构的研究. 华北农学报,2010, 25(6):211-216. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||