[1] Stevenson B A, Sparling G P, Schipper L A, et al . Pasture and forest soil microbial communities show distinct patterns in their catabolic respiration responses at a landscape scale. Soil Biology and Biochemistry, 2004, 36(1): 49-55. [2] Xi J Y, Hu H Y, Qian Y. Application of biology system in the study of microbial community. Acta Microbiologica Sinica, 2003, 43(1): 138-141. [3] Talbot J M, Bruns T D, Taylor J W, et al . Endemism and functional convergence across the North American soil mycobiome. Proceedings of the National Academy of Sciences, 2014, 111(17): 6341-6346. [4] Zheng H, Ouyang Z Y, Fang Z G, et al . Application of biology to study on soil microbial community functional diversity. Acta Pedologica Sinica, 2004, 41(3): 456-461. [5] Garland J L, Mills A L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Applied and Environmental Microbiology, 1991, 57(8): 2351-2359. [6] Wu Y H, Gao Q, Cheng G D. Primary study on hepaticae from mountain Qilian. Bulletin of Botanical Research, 2008, 28(2): 147-150. [7] Ren J Z, Hou F J. System coupling of mountain-oasis-desert plays a key role in the protection of water resource in Qilianshan mountains. Pratacultural Science, 2010, 27(2): 4-7. [8] Liu J, Liu X L, Hou L M. Changes and ecological vulnerability of landscape pattern in eastern Qilian mountain. Arid Land Geography, 2012, 35(5): 795-805. [9] Ding L L, Qi B, Shang Z H, et al . The characteristics of soil microorganism quantity under different alpine grasslands in eastern Qilian mountain. Journal of Agro-Environment Science, 2007, 26(6): 2014-2111. [10] Han Y Z, Chen X R, Wang G R, et al . Distribution characteristics of soil microorganism in alpine grassland of eastern Qilian mountains. Pratacultural Science, 2007, 24(4): 14-18. [11] Ding L L, Qi B, Shang Z H, et al . Dynamics of different soil microbial physiological groups and their relationship to soil conditions under sub-alpine grasslands vegetation in the eastern-Qilian mountain. Acta Prataculturae Sinica, 2007, 16(2): 9-18. [12] Wang G R, Chen X R, Zhang J Z, et al . The temporal and spatial distribution of soil microorganism physiological floras in alpine shrubs of the eastern Qilian mountains. Acta Prataculturae Sinica, 2011, 20(2): 31-38. [13] Mao W L, Tai X S, Wu X K, et al . Altitudinal variation characteristics of the cultivable soil bacterial community on the upper reaches of the Heihe river, Qilian mountains. Journal of Glaciology and Geocryology, 2013, 35(2): 447-456. [14] Yang C D, Long R J, Chen X R, et al . Seasonal dynamics in soil microbial biomass and enzymatic activities under different alpine brushlands of the eastern Qilian mountains. Acta Prataculturae Sinica, 2011, 20(6): 135-142. [15] Ma Q Z. Protection of grassland ecology, building a beautiful pastoral area. Acta Prataculturae Sinica, 2014, 23(1): 1-2. [16] Gao Y, Lin H L. The prospects for rangeland ecosystem services evaluation. Acta Prataculturae Sinica, 2014, 23(3): 290-301. [17] Wang Q L, Cao G M, Wang C T. Quantitative characters of soil microbial biomass under different vegetations in alpine meadow. Chinese Journal of Ecology, 2007, 26(7): 1002-1008. [18] Wang Q L, Wang C T, Du Y G, et al . Grazing impact on soil microbial biomass carbon and relationships with soil environment in alpine Kobresia meadow. Acta Prataculturae Sinica, 2008, 17(2): 39-46. [19] Yang Y, Chen R S, Song Y X, et al . Measurement and estmation of grassland evapotranspiration in a mountainous region at the upper reach of Heihe River basin, China. Chinese Journal of Applied Ecology, 2013, 24(4): 1055-1062. [20] Zhang G L, Gong Z T. Soil Survey Laboratory Methods[M]. Beijing: Science Press, 2012. [21] Shen W S, Lin X G, Zhang H Y, et al . Microbial activity and functional diversity in soils used for the commercial production of cucumbers and tomatoes in poly tunnel greenhouse, under different fertilization. Acta Ecologica Sinica, 2008, 28(6): 2682-2689. [22] Zhang Y Y, Qu L Y, Chen L D. An amendment on information extraction of Biology EcoPlate TM . Microbiology China, 2009, 36(7): 1083-1091. [23] Zhang H H, Tang M, Chen H, et al . Microbial communities in Pinus tabulaeformis mycorrhizosphere under different ecological conditions. Acta Ecologica Sinica, 2007, 27(12): 5463-5470. [24] Choi K H, Dobbs F C. Comparison of two kinds of Biolog microplates (GN and ECO) in their ability to distinguish among aquatic microbial communities. Journal of Microbiological Methods, 1999, 36(3): 203-213. [25] Garland J L. Analysis and interpretation of community-level physiological profiles in microbial ecology. FEMS Microbiology Ecology, 1997, 24(4): 289-300. [26] Smith J L, Paul E A. The Significance of Soil Microbial Biomass Estimations[M]. New York: Marcel Dekker, 1990: 357-396. [27] Wang G H, Jing J, Xu M N, et al . Effects of plant, soil and soil management on soil microbial community diversity. Chinese Journal of Ecology, 2006, 25(5): 550-556. [28] Wu Z Y, Lin W X, Chen Z F, et al . Characteristics of soil microbial community under different vegetation types in Wuyishan national nature reserve, east China. Chinese Journal of Applied Ecology, 2013, 24(8): 2301-2309. [29] Han F, Shao Y Q, Zhao J, et al . The diversity of soil microorganism in different land-use types in Huangfuchang watershed. Acta Scientiarum Naturalium Universitatis Nei Mongol, 2003, 34(3): 298-303. [30] Liu X J, Chen N L, Tian Q. Comparison on soil microenvironment modification of two cushion species. Acta Prataculturae Sinica, 2014, 23(1): 123-130. [31] Xiang S R, Doyle A, Holden P A, et al . Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils. Soil Biology and Biochemistry, 2008, 40(9): 2281-2289. [32] Pengthamkeerati P, Motavalli P P, Kremer R J. Soil microbial activity and functional diversity changed by compaction, poultry litter and cropping in a claypan soil. Applied Soil Ecology, 2011, 48(1): 71-80. [33] He X, Su Y, Liang Y, et al . Land reclamation and short-term cultivation change soil microbial communities and bacterial metabolic profiles. Journal of the Science of Food and Agriculture, 2012, 92(5): 1103-1111. [34] Degens B P, Schipper L A, Sparling G P, et al . Decreases in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities. Soil Biology and Biochemistry, 2000, 32(2): 189-196. [35] Shen C, Xiong J, Zhang H, et al . Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biology and Biochemistry, 2013, 57: 204-211. [36] He R, Wang J S, Shi Z, et al . Variations of soil microbial biomass across four different plant communities along an elevation gradient in Wuyi mountains, China. Acta Ecologica Sinica, 2009, 29(9): 5138-5144. [37] Nannipieri P, Ascher J, Ceccherini M T, et al . Microbial diversity and soil functions. European Journal of Soil Science, 2003, 54(4): 655-670. [38] Konopka A, Oliver L, Turco J R F. The use of carbon substrate utilization patterns in environmental and ecological microbiology. Microbial Ecology, 1998, 35(2): 103-115. [2] 席劲瑛, 胡洪营, 钱易. Biolog方法在环境微生物群落研究中的应用. 微生物学报, 2003, 43(1): 138-141. [4] 郑华, 欧阳志云, 方治国, 等. BIOLOG在土壤微生物群落功能多样性研究中的应用. 土壤学报, 2004, 41(3): 456-461. [6] 吴玉环, 高谦, 程国栋. 祁连山地区苔类植物的初步研究. 植物研究, 2008, 28(2): 147-150. [7] 任继周, 侯扶江. 山地-绿洲-荒漠的系统耦合是祁连山水资源保护的关键措施. 草业科学, 2010, 27(2): 4-7. [8] 刘晶, 刘学录, 侯莉敏. 祁连山东段山地景观格局变化及其生态脆弱性分析. 干旱区地理, 2012, 35(5): 795-805. [9] 丁玲玲, 祁彪, 尚占环, 等. 东祁连山不同高寒草地型土壤微生物数量分布特征研究. 农业环境科学学报, 2007, 26(6): 2104-2111. [10] 韩玉竹, 陈秀蓉, 王国荣, 等. 东祁连山高寒草地土壤微生物分布特征初探. 草业科学, 2007, 24(4): 14-18. [11] 丁玲玲, 祁彪, 尚占环, 等. 东祁连山亚高山草地土壤微生物功能群数量动态及其与土壤环境关系. 草业学报, 2007, 16(2): 9-18. [12] 王国荣, 陈秀蓉, 张俊忠, 等. 东祁连山高寒灌丛草地土壤微生物生理功能群的动态分布研究. 草业学报, 2011, 20(2): 31-38. [13] 毛文梁, 台喜生, 伍修锟, 等. 黑河上游祁连山区土壤可培养细菌群落生境的垂直分异特征. 冰川冻土, 2013, 35(2): 447-456. [14] 杨成德, 龙瑞军, 陈秀蓉, 等. 东祁连山高寒灌丛草地土壤微生物量及土壤酶季节性动态特征. 草业学报, 2011, 20(6): 135-142. [15] 马启智. 保护草原生态、建设美丽牧区. 草业学报, 2014, 23(1): 1-2. [16] 高雅, 林慧龙. 草地生态系统服务价值估算前瞻. 草业学报, 2014, 23(3): 290-301. [17] 王启兰, 曹广民, 王长庭. 高寒草甸不同植被土壤微生物数量及微生物生物量的特征. 生态学杂志, 2007, 26(7): 1002-1008. [18] 王启兰, 王长庭, 杜岩功, 等. 放牧对高寒嵩草草甸土壤微生物量碳的影响及其与土壤环境的关系. 草业学报, 2008, 17(2): 39-46. [19] 阳勇, 陈仁升, 宋耀选, 等. 黑河上游山区草地蒸散发观测与估算. 应用生态学报, 2013, 24(4): 1055-1062. [20] 张甘霖, 龚子同. 土壤调查实验室分析方法[M]. 北京: 科学出版社, 2012. [21] 申卫收, 林先贵, 张华勇, 等. 不同施肥处理下蔬菜塑料大棚土壤微生物活性及功能多样性. 生态学报, 2008, 28(6): 2682-2689. [22] 张燕燕, 曲来叶, 陈利顶. Biolog EcoPlate TM 实验信息提取方法改进. 微生物学通报, 2009, 36(7): 1083-1091. [23] 张海涵, 唐明, 陈辉, 等. 不同生态条件下油松( Pinus tabulaeformis )菌根根际土壤微生物群落. 生态学报, 2007, 27(12): 5463-5470. [27] 王光华, 金剑, 徐美娜, 等. 植物、土壤及土壤管理对土壤微生物群落结构的影响. 生态学杂志, 2006, 25(5): 550-556. [28] 吴则焰, 林文雄, 陈志芳, 等. 武夷山国家自然保护区不同植被类型土壤微生物群落特征. 应用生态学报, 2013, 24(8): 2301-2309. [29] 韩芳, 邵玉琴, 赵吉, 等. 皇甫川流域不同土地利用方式下的土壤微生物多样性. 内蒙古大学学报(自然科学版), 2003, 34(3): 298-303. [30] 刘晓娟, 陈年来, 田青. 两种类型垫状植被对土壤微环境修饰作用的比较. 草业学报, 2014, 23(1): 123-130. [36] 何容, 汪家社, 施政, 等. 武夷山植被带土壤微生物量沿海拔梯度的变化. 生态学报, 2009, 29(9): 5138-5144. |